Unlocking the lookup singularity with Lasso

Srinath Setty* Justin Thaler! Riad Wahby*

Fengrun Liu(Xll;5ji#) 2023.9

Outline

o Relation in Lasso and Sparse-poly-commit

o KZG + Gemini: PCS for dense multilinear poly

o Spark: Spartan’s sparse PCS
o start from a simple case (c=2) to a general result
o main tech: offline memory-checking [BEG+91]
o finally, specialing the Spark to Lasso

o Surge: a generalization of Spark, providing Lasso

o prover commits to an m X N matrix with each row is an unit vector
(indeed commits to a sparse vector of size N with sparsity m)

o establish the sparse vector’s inner product with any dense, structured vector

LASSO-of-Truth

Lookup Arguments via Sparse-poly-commit and the Sum-check protocol, including for Oversized Tables

Reduce lookup to a matrix-vector multiplication with a sparse matrix.

. Suppose that the verifier has a commitment to a table ¢t € F™ as well as a commitment to another vector N
. a € F™. Suppose that a prover wishes to prove that all entries in a are in the table {. A simple observation :

in prior works ||ZBK+22L |Z£1K+22!| is that the prover can prove that it knows a sparse matrix M € F™*" :

: [such that for each row of M, only one cell has a value of 1 and the rest are zeros and that M -t = a,| where 4 - Iy
. - is the matrix-vector multiplication. This turns out to be equivalent, up to negligible soundness error, to : t
. confirming that
> M(ry)-ty) =a(r), (5)
y€{0,1}loe N

- for an 7 € FY°8™ chosen at random by the verifier. Here, M, @ and ¢ are the so-called multilinear extension :

. polynomials (MLEs) of M, ¢, and a (see Section 2.1] for details). 5

L e et et et e e e e ee e e e e e st e e e e et e e e e e e a et e e s a e a e an e e e et e e e e e et e a e e e e e a e e e e e s : 1. Commit to the Sparse matrix M
- : 2. Reduced to a sum-check protocol

Sparse multilinear polynomial. 3. Evaluation on a random point

Definition 2.1. A multilinear polynomial g in £ variables is a sparse multilinear polynomial if |DenseRepr(g)| :
. 18 sub-linear in O(2%). Otherwise, it is a dense multilinear polynomial. :

As an example, suppose g : F?* — F. Suppose |DenseRepr(g)| = O(2°), then g is a sparse multilinear :
. polynomial because O(2°) is sublinear in O(22%%). :

PCS for dense multilinear poly
KZG-based PCS for multilinear poly

Costs for committing to a /-variate multilinear polynomial

Scheme Commit Size Proof Size VY time Commit time P time Eval
KZG + Gemini 1 |G| O(log N) |G1| O(logN) Gq O(N) G, O(N) G,
Brakedown-commit 1 |H] OWN-A)|F| OWN-AN)F O(N)FH O(N) F, H
Orion-commit 1 |H O(Alog? N) [H| O(Alog? N)YH O(N)F, H O(N) F, H
Hyrax-commit O(v/'N) |G| O(V'N) |G| O(V/N) G O(N) G O(N) F
Dory 1 |G| O(log N) |G| O(logN) Gt O(N) Gy O(N) F
Sona (this work) 1 |H] O(1) |G| O(VN) G O(1) G O(N) F, O(VN)G

Figure 1: Costs of polynomial commitment schemes when committing to a multilinear ¢-variate polynomial over F,
with|N = 2°.| All are transparent. P time refers to the time to compute evaluation proofs. In addition to the reported
O(N) field operations, Hyrax and Dory require roughly O(N 1/ %) cryptographic work to compute evaluation proofs. F
refers to a finite field, H refers to a collision-resistant hash, G refers to a cryptographic group where DLOG is hard,
and (G1, Gz, Gr) refer to pairing-friendly groups. Columns with a suffix of “size” depict to the number of elements of
a particular type, and columns with a suffix of “time” depict the number of operations (e.g., field multiplications or
the size of multiexponentiations). Orion also requires O(v/N) pre-processing time for the verifier.

PCS for dense multilinear poly

KZG based PCS for multilinear poly

Scheme Commit Size Proof Size VY time Commit time P time Eva]
KZG + Gemini 1 |Gq] O(log N) |G1|] O(log N) G, O(N) G O(N) Gy

-- ’ 5" W R W W R EEEEEEEEEEEEEEESN

The structured reference string (SRS) now consists of encodings in G of all powers of all Lagrange basis :

polynomlals evaluated at a randomly chosen input r € F¢. That is, if x1,..., X, denotes an enumeration 1. Transparent Setup with secret r
of the 2¢ Lagrange basis polynomials, the SRS equals (g%("), ... g% (r)) Once again, the toxic waste that :

- must be discarded because it can be used to destroy binding is the value r.

Tamassia [PST13]. Let £ denote the number of variables of g, so g:]Fe — IF,,. In applications of multlhnear 2. Commit to q

]
--

. Asin the univariate commitment scheme, to commit to a multlllnear polynomlal g over IF,, the committer : -
sends a value ¢ claimed to equal g4 N ote that while the committer does not know r, it is still able to
écompute g9") using the SRS: if q(X) =):, oCiXi(X), then g?(") H (gX‘) which can be computed :
given the values g% (") for all i = 0,...,2¢ even without knowing . E

commit size: O(1)
= commit time: O(N)

To open the commitment at 1nput Z € IE"K to some value v, i.e., to prove that g(z) = v, the committer :

computes a series of £ “witness polynomlals wi,...,wy, defined in the following fact. 3. Evaluation on ¢(z)
Fact 15.1 (Papamanthou, Shi, and Tamassia [PST13]). For any fixed z = (z1,...,2¢) € IFf, and any multilin- - Compl?te ¢ multilinear polys Wlf o W
. ear polynomial q, q(z) = v if and only if there is a unique set of £ multilinear polynomials wy,...,w; such 2. COMMIt to Wy, ..., W, -> proof size O(£)
- that 3. check the relation of exponent using pairing
y He vi.g-g~) Vtime: O(¢)
g(X)—v =) (Xi—z)wi(X). (15.4)
i=1
... 5

P time(1+2): O(N) Zhang et al. [ZGK+] vRAM
refer to https:/people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf

PCS for dense multilinear poly

Prover time for computing and committing with O(/V)

Warning for notation change !! Now prover is required to computes ¢, ..., g, when evaluating multilinear poly f(¢, ..., 7,) !

. Recall that during Evaluate the prover computes :
. polynomials ¢;(x;,...,x¢) for i = 1,...,4, such that:

gf(xl,...,xg) = Zle (x,'—t,') . qi(xi,...,xg) + f(tl,...,tg)é
-and proof 7 = {gqi(sf"“’sf),g“q"(si"“’sf)}le. We start by :

Proof: q,(x, ..., x,) = h(x,, ..., x,) with no monomial with x;,

=Ry (x2,...,%¢) + (x1 —11)h(x2, ..., X¢) .

..

. We set g1(x1,...,x¢) = h(x2,...,x¢) (which means g con-§
tains no monomial with x;), and proceed to decompose the§
multi-linear polynomial R;(xy,...,x¢) with £ — 1 variables 1n
. the same way as f to compute g(xz,...,%;). Regarding the:

Proof: It holds forg,_(x;,...,x,)fori—1=1,...,7.

1. compute g; and R; in 027~ —» O(N) in total

Solve the following equations to compute multilinear R, and /:
(x5, ..., x, range over {0,1 }’“ﬂ‘l)

f0,x5, ..., x0) = Ri(xy, ..., xp) + (0 —1)h(xy, ..., X,)

fxy, oc0x) = Ri(xy, ..., xp) + (1 — 1)h(xy, ..., x,)

2. commit to g; in 077 —» O(N) in total

greasoning applies for all of gs,...,qy. At the last step after :
|computing g,(x;), the remaining constant term is equal tof
(the answer f(t1,...,%7). In general, in the ith step, we are

refer to https:/faculty.cc.gatech.edu/~genkin/papers/vram.pdf

q(X15 ..., xp) = h(xy, ..., X,)

2f 25—1 2f—1

2 Cixi(Xps ves Xp) = Z 2¢; (0,5, ..., X,) = Z 2¢; (1,x5, ..., x0)
i=1

2f—1

gD = H(g)(,-(r))Zci
1

Spark: Spartan’s sparse PCS

Notations & Overview

Lasso’s starting point is Spark, an optimal sparse polynomial commitment scheme from Spartan [Set20]. It : . .
: allows an untrusted prover to|prove evaluations pbf a sparse multilinear polynomial with [costs proportional |to : ,k%g,f,%ljg?,!ﬂ?_%?lﬁ P?,l},’,r,‘?m‘,%l, ,,,,,,,
: the size of the dense representation of the sparse multilinear polynomial. Spartan established security of:

. Dense representation for multilinear polynomials. Since the MLE of a function is unique, it offers :

: _ ™ , , - _ ’ S unique MLE forx €

. the following method to represent any multilinear polynomial. Given a multilinear polynomial g : F* — F, it : TR T T LTI T TR 5
. can be represented uniquely by the list of tuples L such that for all i € {0, 1}*, (to-field(3), g(7)) € L if and - s 5
. only if g(i) # 0, where to-field is the canonical injection from {0,1}¢ to F. We denote such a representation : eq(z,e) = H (ziei + (1 —z;)(1 —e;)) .
. of g as DenseRepr(g). =1

Notations:

N denotes the size of log N-variate multilinear polynomial g.
m denotes the sparsity, then g(x) = Z g2(1)éq(i, x)

i€{0,1}1eN: 6(7)£0 log N variables is decomposed to ¢ blocks, each of log m.
Let ¢ be such that N = m* (or log N = clog m)

Commitment: commit to a “dense” representation of the sparse polynomial.

Evaluation g(7) of the committed polynomial g:

: A naive solution. Consider an algorithm that iterates over each Lagrange basis polynomials specified 1n
. the committed dense representation, evaluates that basis polynomial at r, multiplies by the correspondingg . .
coefficient, and adds the result to the evaluation. Unfortunately, a naive evaluation of a (log N)-variate A naive solution: compute term-by-term

. Lagrange basis polynomial at r would take O(log N) time, resulting in’a total runtime of|O(m - log N).

Spark: Spartan’s sparse PCS

Notations & Overview

Evaluation g(7) of the committed polynomial ¢ in O(c - m).

Main idea: Represent the log N-variate Lagrange basis polynomial at 7 as a product of ¢ “smaller” Lagrange basis polynomials, each defined over log m-variate.
(Reminiscent of Pippenger’s time-optimal algorithm for multiexponentiation)

Decompose the log N = c¢ - logm variables of r into ¢ blocks, each of size logm, writing|r = (r1,...,7:)|€ :
. (F'°¢™)". Then any (log N)-variate Lagrange basis polynomlal evaluated at r can be expressed as a product of
. ¢ “smaller” Lagrange basis polynomials, each defined over only log m variables, with the ¢’th such polynomlal :

g (r) = Z g (x)eQ(x 1) = Z g (%) H eQ(xi’ r i) log N variables is decomposed to ¢ blocks, each of log m.
x€{0,1}1°2N: o(x)£0 (Xq,....x.)E{0,1}¢108: o(x)=£0 i=1
1. Evaluate ¢ write-once memory M, each consisting m evaluations of eg(x, r;) for x € {0,1 Hogm ___~in O(c - m) total time.

2. Given all memory M, any log N-variate Lagrange basis polynomial at r (i.e. ég(x, r)) can be evaluated by performing ¢ lookups into memory,
one for each r;, and multiplying together the results. —> in O(c - m) total time.

How the Spark prover proves it correctly ran the above time-optimal algorithm. To enable an
untrusted prover to efficiently prove that it correctly ran the above algorithm to compute an evaluation of
a sparse polynomial g at r,|Spark uses offline memory checking |!BE£1+91!| to prove read-write consistency.

General case: decompose log N variables to ¢ blocks, each of (log N)/c variables.
1. Evaluate ¢ memory of size M = N"¢in ¢ - NY¢ = O(c - m) time. (assuming " > N
2. Given all memory, evaluate g(r) by performing c¢ - m lookups in O(c - m) time.

Spark: Spartan’s sparse PCS

@ 5 m E N EE A EEEEEEEEEEEEEEEEEEEEEEEEEEEE RN EEEEEEEEEE RS EEEEEEEEEEEEEEEEEEEEEEEEEEE NS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

: is adapted from an exposition of Spartan’s result by Golovnev et al. [GLS™21]. It is natural for the reader to

. conceptualize the Spark sparse polynomial commitment scheme as|a bespoke SNARK |for a prover to prove it :
: correctly ran the sparse (log N)-variate multilinear polynomial evaluation algorithm described in Section [3.1
. using ¢ memories of size N1/¢. -

Theorem 1 (Special case of Theoremlw1th ¢ =2). LetM = N1/2.| Given a polynomial commitment scheme
. for (log M)-variate multilinear polynomials with the following parameters (where M is a positive integer and

: WLOG a power of 2):

— the size of the commitment is c(M); PCS for dense multilinear polys E(KZG extension)

— the running time of the commit algorithm is tc(M);
— the running time of the prover to prove a polynomial evaluation is tp(M);
— the running time of the verifier to verify a polynomial evaluation is tv(M);

— the proof size is p(M),

there exists a polynomial commitment scheme for multilinear polynomials over 2log M = log N variables tha,t:
. evaluate to|a non-zero value at at most m locations over the Boolean hypercube {0, 1}21°g'v'_| with the following :
. parameters:

PCS for a log N-variate multilinear polynomial of sparsity m.

: |(decompose log N variables to ¢ = 2 blocks)

— the size of the commitment is Tc(m) + 2c(M); Do "
ominate COSts Tror prover:

— the running time of the commit algorithm is O(tc(m) + tc(M)); . - committing to 7 dense multilinear polys over log m-vars

— the running time of the prover to prove a polynomial evaluation is O(tp(m) + tc(M)); - committing to 2 dense multilinear polys over log(NY)-yars

— the running time of the verifier to verify a polynomial evaluation is O(tv(m) + tv(M)); and y
:|Aslongasm > N,

B o 9 :
the proof size is O(p(m) + p(M)). . [prover time is linear in the sparsity of the committed poly.

Spark: Spartan’s sparse PCS

The full result

For each memory checked, the prover has to commit to three multilinear polynomials defined over log(m)-many
. variables, and one defined over log(M) = log(/N)/c variables. We obtain the following theorem.

Theorem 2. Given a polynomial commitment scheme for (log M)-variate multilinear polynomials with the
. following parameters (where M is a positive integer and WLOG a power of 2):

the size of the commitment is c(M);

the running time of the commit algorithm is tc(M);

the running time of the prover to prove a polynomial evaluation is tp(M);
the running time of the verifier to verify a polynomial evaluation is tv(M);

the proof size is p(M),

there exists a polynomial commitment scheme for (clog M)-variate multilinear polynomials that evaluate to a

. non-zero value at at most m locations over the Boolean hypercube {0,1}¢1°8M “ayith the following parameters: E

. Many polynomial commitment schemes have|efficient batching properties for evaluation proofs.

the size of the commitment is|(3c + 1)c(m) + ¢ - c(M);

the running time of the commit algorithm is O (c - (tc(m) + tc(M)));
the running time of the prover to prove a polynomial evaluation is O (c (tp(m) + tc(M)));
the running time of the verifier to verify a polynomial evaluation is O (c (tv(m) + tv(M)));

the proof size is O (c (p(m) + p(M))).

For such

. schemes, the factor ¢ can be omitted in the final three bullet points of Theorem [2| (i.e., prover and verifier
. costs for verifying polynomial evaluation do not grow with c).

PCS for a log N-variate polynomial of sparsity m,
using ¢ memories of size M = N
(decompose log N variables to ¢ blocks)

Dominate costs for prover:

committing to
= 3¢ + ldense multilinear polys over log m-vars

¢ dense multilinear polys over log(N¢)-vars

Original representation:

Spark: Spartan’s sparse PCS

Special case (¢ = 2): detailed commit phase
Recall the notations: log M

= A log N-variate multilinear polynomial of sparsity m, sub-linear to V.

= Decompose log N variables to ¢ blocks. log M
- Evaluate ¢ memories of size M = N'¢. — relation: log N = clog M

It represents a log N-variate Lagrange basis polynomial at r as a product of ¢ = 2 “smaller” Lagrange basis polynomials, each defined over log M-variate.

Representing sparse polynomials with dense polynomials. Let D denote a (2log M)-variate mul- : | Dense representation:
: tilinear polynomial that evaluates to a non-zero value at at most m locations over {0, 1}21°gM. For any :
LT E F2loeM " we can express the evaluation of D(r) as follows. Interpret r € F210eM a5 a tuple (rg,ry) in a
. natural manner, where r,,r, € Fl°¢M Then by multilinear Lagrange interpolation (Lemma, , we can write :

(7) m |row col val

D(Tma"'y) — Z D(Zaj) ‘@(zarw)) &1(], Ty).
(4,5)€{0,1}oeMx{0,1}°eM: D(7,5)#0

Claim 1. Let to-field be the canonical injection from {0,1}1°8M to F and to-bits be its inverse. Given a
. 2log M-variate multilinear polynomial D that evaluates to a non-zero value at at most m locations over :
{0, 1}21°gM, there exist|three (log m)-variate multilinear polynomials row, col, val |such that the following holds :

[l

[l

Commit phase: commit to 3 log m-variate polys

Commit costs: O(m) field operations

Spark: Spartan’s sparse PCS

Special case (¢ = 2): detailed evaluation phase

' Claim 1. Let tofield be the canonical injection from {0,1}°6M to F and to-bits be its inverse. Given a
. 2log M-variate multilinear polynomial D that evaluates to a mon-zero value at at most m locations over :
. {0,1}21°8M there exist|three (logm)-variate multilinear polynomials row, col, val |such that the following holds °

rrr
]

Dense representation:

m |row col val

D(re,ry) =y, val(k) - égto-bits(row(k))}) - ég(to-bits(col (k).). ®)

Commit phase: commit to 3 log m-variate polys

. A first attempt at the evaluation phase. Given r,,7, € FloeM " to prove an evaluation of a committed :
. polynomial, i.e., to prove that D(r,,r,) = v for a purported evaluation v € F, consider the polynomial IOP :
. in Figure |2} where the polynomial IOP |assumes that the verifier has oracle access to the three (log m)-variate|:
. multilinear polynomial oracles that encode D (namely row, col, val). '

Evaluation procedure to prove D(z,. r,) = v:

1. (Write) Evaluate ¢ = 2 memory of size M.

- éq(i, r,) asiranged over {0,1 ylog M

- €q(j, 1) as j ranged over {0,1 ylog M
2. (Read) Evaluate D at point (r,, 1) € F21°e M term-by-term with ¢ - m lookups into memories.

* Prover needs to sends the oracles £, . and E,, thought as the purported multilinear extensions of the values returned by each memory.

If provler is honest, £, . and Ec,l,y a:)e defined als follows. o Wk € {0,1}5™ B, (k) = éqto-bits(row(k)), r.): and

* But malicious prover may send arbitrary oracles. : :
, , , o o : o Vk € {0,1}s™ FE (k) = éq(to-bits(col(k)), r,). :

* As a result, verifier is required to additionally check the two conditions hold. { } y() Q(.......... (())y)

Spark: Spartan’s sparse PCS

Special case (¢ = 2): Afirst attempt at the evaluation phase

. A first attempt at the evaluation phase. Given r,,7, € F logM to prove an evaluation of a committed :
. polynomial, i.e., to prove that D(r;,r,) = v for a purported evaluation v € F, consider the polynomial IOP :

. in Figure ' Where the polynomial IOP assumes that the verifier has oracle access to the three (logm)- varlate
. multilinear polynomial oracles that encode D (namely row, col, val).

1. P = V: two (logm)-variate multilinear polynomials|Ex and E,, as oracles.| These polynomials are
purported to respectively equal the multilinear extensions of the functions mapping k € {0,1}'°8™
to eq(to-bits(row(k)),r,) and eq(to-bits(col(k)),).

2. V < P: run the sum-check reduction to reduce the check that

v= Y val(k) - Ex(k) - Ey(k)

ke{o,l}log m

to checking if the following hold, where 7, € F'°8™ is chosen at random by the verifier over the

course of the sum-check protocol:
?
o val(r,) = vyal;
? ?
o E(r.) =vg, and Ey(r,) = vg,. Here, v, vg
at the end of the sum-check protocol.

3. V: check if the three equalities hold with an oracle query to each of val, £\, Ey.

and vg,, are values provided by the prover

rx?

Figure 2: A first attempt at a polynomial IOP for revealing a requested evaluation of a (2log(M))-variate
. multilinear polynomial p over F such that p(z) # 0 for at most m values of x € {0,1}21°8(M),

If prover is honest,
E,. and E, are purported as follows:

. e Vk €{0,1}¢™ E, (k) = ég(to-bits(row(k)), ,); and
. e Vke{0,1}¢™ E, (k) = ég(to-bits(col(k)),).

But malicious prover may send arbitrary oracles.

As a result, V is required to additionally check
the two conditions hold.

Spartan [Set20]: check the two conditions using
memory-checking techniques [BEG+91]

which confirms that every memory read over
the course of an algorithm’s execution returns
the value last written to that location.

Spark: Spartan’s sparse PCS

Offline memory-checking techniques [BEG+91]

. Detour: Offline memory checking. Recall that in the offline memory checking algorithm of [BEGT91], = Two operations for our purpose.
:|la trusted checker issues operations to an untrusted memory.|For our purposes, it suffices to consider only * initialized to a certain value
: operation sequences in which|each memory address is initialized to a certain value, |and all subsequent : ° read operations

t] d tions. |T ble efficient checki ' Itiset-fi inting techni the : : :
D A A S e o L eI PG Mo ates, Mhe enable checking with hash

:operations are read operations. To|enable efficient checking using multiset-fingerprinting techniques, the: + stores a timestamp with each address
. memory is modified so that in addition to storing a value at each address, the memory also stores a timestamp: + modified read operations

:with each address. Moreover, each read operation is followed by a write operation that updates the t1mestamp + followed by a write operation that
: associated with that address (but not the value stored there). 5 updates the timestamp associated

... with that address

. In prior descriptions of offline memory checking [BEGT91 SAGL18]|, the trusted checker maintains : In Spark and [this work]

: a single timestamp counter and uses it to compute write timestamps, whereas|in Spark and our description|: T each memory cell maintains a counter

. below, the trusted checker does not use any local timestamp counter; rather, each memory cell maintains its i T modified read operations

. own counter, which is incremented by the checker every time the cell is readlEl For this reason, we depart * followed by a write operation where
: from the standard terminology in the memory-checking literature and henceforth refer to these quantities as the counter is incremented

| counters| rather than timestamps. '

@
-
-

+
-
==

14

Spark: Spartan’s sparse PCS

Offline memory-checking techniques [BEG+91]

Goal:

A trusted checker issues operations to an untrusted memory (provided by prover).
~ Prover executes an algorithm with purported functions, which are indeed read operations into memory.
~ Verifier is convinced that every memory read over the course of an algorithm’s execution returns the value last written to that location.

In Spark and [this work]

:+ each memory cell maintains a counter

:T modified read operations

. Tt followed by a write operation where
the counter is incremented

: Local state of the checker: Two sets: RS and WS, which are initialized as follows['®| RS = {},|and for an

. 1M-sized memory,

WS is initialized| to the following set of tuples: for all i € [N'/€], the tuple (i,v;,0) is

gincluded in WS, where v; is the value stored at address 7, and the third entry in the tuple, 0, is an “initial :
. count” associated with the value (intuitively capturing the notion that when v; was written to address 4, it :
. twas the first time that address was accessed). Here, [M] denotes the set {0,1,...,M —1}. '

* Untrusted M-sized memory: each cell stores a value-count pair (v, f) where ¢ is initialized to O.

* Modified read operation: (recorded by the local state of the checker)

1. checker queries a read operation at address a. (RS)

2. the untrusted memory responds with a value-count pair (v, t) 2. store (v,t+ 1) at address a in the untrusted memory; and
(value is responded via the purported oracle £, an E,.) 3. WS « WS U {(a,v,t + 1)}.

3. the untrusted memory increment the counter at address a (WS)

1. RS +~ RSU{(a,v,t)};

15

Spark: Spartan’s sparse PCS

Offline memory-checking techniques [BEG+91]

Goal:
A trusted checker issues operations to an untrusted memory (provided by prover).
~ Prover executes an algorrthm with purported functions, which are indeed read operations into memory.
~ Verifier is convinced that very memory rea over t e course o an a gorrt m s executron returns the va ue ast wrrtten to t at ocatron;

Untrusted M-sized memory: each cell stores a value-count pair (v, r) where ¢ is initialized to O.

[nitialization: RS={} and WS={(i, v;,0)|for all i € [M]}

Modified read operation: (recorded by the local state of the checker)

1. checker queries a read operation at address a. (RS) 1. RS < RS U {(a,v,t)}:
2. the untrusted memory responds with a value-count pair (v, 1) 2. store (v,t + 1) at address a in the untrusted memory; and
(value is responded via the purported oracle £, an E,,y) 3. WS « WS U {(a,v,t +1)}.

3. the untrusted memory increment the counter at address a (WS)

Invariant maintained on the sets of the checker. Prove two directions:

Claim 2. Let F be a prime order field. Assuming that the domain of counts is F and that m (the number of

reads issued)|is smaller than the field characteristic [Fl) Let WS and RS denote the multisets maintained by : exist a set S with cardinality M
é;the checker in the above algomthm at the conclusion of m read opemtzons If fo'r every read operation, the | such that WS = RS U S
Juntrusted ‘memory returns the tuple last written to that location, then there exists a set S with cardinality M

consisting of tuples of the form (k, Vg, tg fo'r all k& € M such that W¢ 5 U S. Moreover, S is comp'u,tab e

in time linear in M.
7 '.' dose not exist any set with cardinality M

the value initially written to cell k, then there does not exist any set S such that WS =RSUS. suchthat WS =RSU S

Spark: Spartan’s sparse PCS

Offline memory-checking techniques [BEG+91]

Invariant maintained on the sets of the checker.

Claim 2. Let F be a prime order field. Assuming that the domain of counts is F and that m (the number of :
reads issued) is smaller than the field characteristic |F|. Let WS and RS denote the multisets maintained by exist a set S with cardinality M
the checker in the above algorithm at the conclusion of m read operations. If for every read operation, the such that WS = RS U S

- untrusted memory returns the tuple last written to that location, then there exists a set S with cardinality M

- consisting of tuples of the form (k,v,tx) for all k € [M] such that WS = RSU S. Moreover, S is computable

in time linear in M. E

Conwversely, if the untrusted memory ever returns a value v for a memory call k € [M] such v does not equal dose not exist any set with cardinality M
 the value initially written to cell k, then there does not exist any set S such that WS =RSUS. such that WS = RSU §

Proof. If for every read operation, the untrusted memory returns the tuple last written to that location, then
it is easy to see the existence of the desired set|S. It is simply the current state of the untrusted memory
: viewed as the set of address-value-count tuples. '

: We now prove the other direction in the claim. For notational convenience, let |WS,,; and RS; (0 < i < m)} Notation
:denote the multisets maintained by the trusted checker at the conclusion of the ith read operation (i.e., WSy :

. and RS, denote the multisets before any read operation is issued). Suppose that there is some read operation: By contradiction:
i that reads from address k, and the untrusted memory responds with a tuple (v, t) such that v differs fromg We have (k, v,) € RS; forall j > i
:|the value initially written to address k. This ensures that (k,v,t) € RS; for all j > ¢, and in particular that| and (k, v, 1) € RS
. (k,v,t) € RS, where recall that RS is the read set at the conclusion of the m read operations. Hence, to: T

Spark: Spartan’s sparse PCS

Offline memory-checking techniques [BEG+91]

Prove the converse direction by contradiction:

: We now prove the other direction in the claim. For notational convenience, let |WS,,; and RS; (0 < i < m)} Notation
:denote the multisets maintained by the trusted checker at the conclusion of the ¢th read operation (i.e., WSy :

. and RSy denote the multisets before any read operation is issued). Suppose that there is some read operationg
|4 that reads from address k, and the untrusted memory responds with a tuple (v,t) such that v differs fromf
the value initially written to address k. This ensures that (k,v,t) € RS, for all 7 > 4, and in particular tha,té
- (k,v,t) € RS, where recall that RS is the read set at the conclusion of the m read operations. Hence, to:

By contradiction:
We have (k,v,t) € RS; forallj > i
and (k,v, 1) € RS

Initialization phase for two multisets: RS={ } and WS={ (i, v;,0) | for all i € [M]}

1. RS +~ RSU{(a,v,t)}; s
2. store (v,t+ 1) at address a in the untrusted memory; and To construct a set S such that RSU § = WS,
3. WS « WS U {(a,v,t+1)}. . |we need to ensure RS C WS.

. | —>» Then S is the difference set.

Assumption : (k, v, f) € RS where v differs from the value initially written to address k.
We want to ensure (k, v, 1) € WS:

* But outside of the initialization phase, WS is only updated with (k, v, f) by a read operation to address k, which returns (v, t — 1).
* Accordingly, we want to ensure (k, v, — 1) € WSfori = 1,..., char(F).
* But there are only 7 < char(F) many read operations. .

Contradiction ! reads issued) is smaller than the field characteristic |F|. Let WS and RS denote the multisets maintained by

Spark: Spartan’s sparse PCS

Offline memory-checking techniques [BEG+91]

Invariant maintained on the sets of the checker.

Claim 2. Let F be a prime order field. Assuming that the domain of counts is F and that m (the number of
reads zssued)Sle'f ta,‘ | el_rmctéstc“4‘ Let WS and RS denote the multisets maintained by : exist a set S with cardinality M
the checker in the above algomthm the conclusion of m read operations. If for every read operation, the such that WS = RSU S
untrusted memory returns the tuple last written to that location, then there exists a set S with cardinality M

- consisting of tuples of the form (k,v,tx) for all k € [M] such that WS = RSU S. Moreover, S is computable

- in time linear in M.

Prove two directions:

Conwversely, if the untrusted memory ever returns a value v for a memory call k € [M] such v does not equal dose not exist any set with cardinality M

the value initially written to cell k, then there does not exist any set S such that WS = RS U S. such that WS =RS U S

. In mathematics, the characteristic of a ring R, often denoted char(R), is defined to be the smallest . FACTS about characteristic of fields:

. number of times one must use the ring's multiplicative identity (1) in a sum to get the additive identity (0). .« The characteristic of any field is either O or a
If this sum never reaches the additive identity the ring is said to have characteristic zero. prime number.

: That is, char(R) is the smallest positive number 7 such that:l'(P198, Thm.23.14) . * The finite field GF(p") has characteristic p.

14--41=0
N— ——

n summands

if such a number n exists, and 0 otherwise.

19

Spark: Spartan’s sparse PCS

Offline memory-checking techniques [BEG+91]

Invariant maintained on the sets of the checker.

--
.

,th the domain of counts is F and that m (the number of Prove two directions:

exist a set S with cardinality M
suchthat WS =RSU S

constngf tples- 0 the H | fr all k € [M] stt WS = RS US. Moreover, S is computable

:an time linear in M.

Conversely, if the untrusted memory ever returns a value v for a memory call k € [M] such v does not equal

. dose not exist any set with cardinality M
the value inatially written to cell k, then there does not evist any set 5 such that W =RSUS5.] such that WS = RSU S

for alli € 1,...,char(F)). We can nonetheless work over fields of smaller characteristic by modifying the | FACTS about characteristic of fields:

: procedure by which the checker updates the counts returned by each read operation. Specifically, rather than 5

s , : : : ——__~_~ "¢ * The characteristic of any field is either O or a
tnitializing counts to 0 and replacing a count t returned by a read operation with t + 1, we instead initialize | prime number

ithe counts to 1, and replace a returned count t with t - g, where g is a fixred generator of the multiplicative e The finite field GF(»™ has ch o
group of the field . With this modification, Claim g applies so long as [F| > m. E € finite e (p) has characteristic p.

Remark 3. The proof of Clazml 2 implies that, if the checker ever performs a read to an “invalid” memory

:cell k, meaning a cell indexed by k & [M|, then regardless of the value and timestamp returned by the untrusted
. prover in response to that read, there does not exist any set S such that WS =RSU S.

Spark: Spartan’s sparse PCS

Special case (¢ = 2): back to the evaluation phase

Evaluation procedure to prove D(r..r,) = v: TR RER E

1. (Write) Evaluate ¢ = 2 memory of si;e M. D(rg,ry) = Z val(k) - eq(to-bits(row(k)), r;) - éq(to-bits(col(k)),r,).
- éq(i, r,) as i ranged over {0,1}1°eM e e e
- €q(j,) as j ranged over {0,1 ylog M

2. (Read) Evaluate D at point (r,, r,) € F21°2 M term-by-term with ¢ - m lookups into memories.

* Prover needs to sends the oracles £, and E,.,, thought as the purported multilinear extensions of the values returned by each memory.

* If prover is honest, £, and E,, are defined as follows.

l A | o Vk € {0,1}5™ E, (k) = éq(to-bits(row(k)), 7,); and :
But malicious prover may send arbitrary oracles. : :
b Y 4 . o Vk € {0,1}°¢™ E, (k) = éq(to-bits(col(k)),r,).

As a result, verifier is required to additionally check the two conditions hold.

!

. Observe that |given the size M of memory and a list of m addresses involved in read operations,|one can :|Computation costs: O(m)
. compute two vectors|C,. € F™,C; € FM) defined as follows. For k € [m], C,[k] stores the count that would
have been returned by the untrusted memory if it were honest during the kth read operation. Similarly, for It includes a final “read pass”
. 7 € [M], let C¢|j] store the final count stored at memory location j of the untrusted memory (if the untrusted :|over the memory.

. memory were honest) at the termination of the m read operations. Computing these three vectors requires : |That's why we refer to it as

. computation comparable to O(m) operations over F. | “offline” memory-checking.

Given the M-sized memory and m read operations, prover computes two vectors C, € " and C; € FMin O(m).

= C.[k]: the count returned by the untrusted memory during kth read operation.
= (j]: final count stored at memory location j after 7 read operations.

Spark: Spartan’s sparse PCS

Special case (¢ = 2): Reduce evaluation to proof of multi-set equality

Reduced to prove the multi-set equality, i.e. RS U § = WS, with aid of counter polynomials.

. Observe that |given the size M of memory and a list of m addresses involved in read operations,|one can :
. compute two vectors|C,. € F™, C; € FM| defined as follows. For k € [m], C,.[k] stores the count that would :
have been returned by the untrusted memory if it were honest during the kth read operation. Similarly, for
. j € [M], let C¢|j] store the final count stored at memory location j of the untrusted memory (if the untrusted :
. memory were honest) at the termination of the m read operations. Computing these three vectors requires :
. computation comparable to O(m) operations over F. '

Given the M-sized memory and m read operations, prover computes two vectors C. € F" and C, € F¥ in O(m).
r f

= C,|k]: the count returned by the untrusted memory during kth read operation.
- Cf[]] ﬁnal count StOl‘ed at memory locationj after m read Opel‘atiOnS.

RIS : Recall the commitment:

: Let read_ts = C,., write_cts = C, + 1, final_cts = C f- We refer to these polynomials as counter polynomials, : ~ c(m) for log m-variate

: which are unique for a given memory size M and a list of m addresses involved in read operations. ~ 1for val

N erarasaanas — for eaCh memory Checked
Commit to counter polynomals e |

; -) . , - ; (decompose log N to ¢ blocks)
. The actual evaluation proof. To prove the evaluation of a given a (2log M)-variate multilinear poly- : - row

:nomial D that evaluates to a non-zero value at at most m locations over {0,1}2!°¢M the prover sends _ :

: : D1 L. — : . : E __for evaluation

: the following polynomials in addition to| Ex and E,:| two (log m)-variate multilinear polynomials as ora- : _ rer; q ts

 cles (read_tsyow,read-tseo|), and two (log M)-variate multilinear polynomials (final_ctsy, final_ctsc,(), where : -

(read _ts,ow, final_cts,on) and (read_tscoy, final_ctsco) are respectively the counter polynomials for the m addresses ¢ " c(M) for log M-variate

{ specified by row and col over a memory of size M. ; fo_r %aChl mf:mory
e - nal_cts

Spark: Spartan’s sparse PCS

Special case (¢ = 2): Reduce evaluation to proof of multi-set equality

. Claim 3. Given a (2log M)-variate multilinear polynomial, suppose that (row,col,val) denote multilinear :
. polynomials commatted by the commat algorithm. Furthermore, suppose that :

(Erx, Ery, read_tsyow, final_cts,ow, read _tseor, final ctseo)

. denote the additional polynomials sent by the prover |at the beginning of the evaluation proof.

: For any r; € FloeM " suppose that

. Similarly, it holds for another condition.
Vk € {0,1}°¢™ E, (k) = éq(to-bits(row(k)), 7). (9) ¢ And the proof is the application of Claim 2.

;Then the following holds: WS = RS U S, where

o WS = {(to-field(i), €q(i, 1), 0): i € {0,1}'°8™} U {(row(k), Ex(k), write_ctsiow(k) = read-tsow(k) +i , sum-check-based protocols for grand products:
1): k € {0,1}los™}, (can be computed in parallel)

o RS = {(row(k), Ex(k), read tsiow(k)): k € {0,1}'°8™}; and - 2 are over vectors of size M

o S = {(to-field(7), €q(i,), final cts,ow (i) : i € {0, 1}°8(M)} .~ 2are over vectors of size m

gMeanwhile, of Equation @I) does not hold, then there is no set S such that WS = RS U S, where WS and RS
:are defined as above. :

:Here, we clarify the following subtlety. The expression to-bits(row(k)) appearing in Equation (9) is not:
:defined if|row(k) is outside of [M] for any k € {0,1}'°™. |But in this event, Remark |3| nonetheless implies the :

:.conclusion of the theorem, namely that there is|no set S such that WS = RSU S. [The analogous conclusion
:holds by the same reasoning if col(k) is outside of [M| for any k£ € {0,1}°8™. 1

Spark: Spartan’s sparse PCS

Special case (¢ = 2): Reduce evaluation to proof of multi-set equality

. Claim 4 ([Set20]). Given two multisets A, B where each element is from F3, checking that A = B is:
: equivalent to checking the following, except for a soundness error of O(|A| + |B|)/|F|) over the choice of «y,T::
- Hry(A) = Hry(B), where Hey(A) =11 (0.0.0ea (hy(a,v,t) — 7), and hy(a,v,t) = a- v? +v-y+t. That zs,
- if A= B, Hr~(A) = H.~(B) with probability 1 over randomly chosen values T and vy in F, while if A # B,
: then Hr~(A) = H, ~(B) with probability at most O(|A| + |B|)/|F|). :

/ /During the commit phase, P has committed to three (logm)-variate multilinear polynomials row, col, val.
1. P — V: four (log m)-variate multilinear polynomials E,, E\y, read_ts,ow, read_ts, and two (log M)-
variate multilinear polynomials final_cts,q, final_ctsco.
2. Recall that Claim (1) (see Equation (8)) shows that D(rs,7y) = > icio 13108 m Val(k) - E(k) - Ery (k)
assuming that
o Vk € {0,1}°¢™ E, (k) = éq(to-bits(row(k)), r,); and
o Vk € {0,1}°¢™ E, (k) = eq(to-bits(col(k)), ;)

Hence, V and P apply the sum-check protocol to the polynomial val(k) - Ex(k) - Ery(k), which sum-check protocol for log m-variate poly of degree 3
reduces the check that lv = ZkE{O,l}logm Val(k') . Erx(k) . Ery(k) to CheCking that the fOllOWing - round Complexity: 0(10g m)
equations hold, where r, € F1°8™ chosen at random by the verifier over the course of the sum-check - communication cost: O(log m) field elements
protocol: ' |
”
e val(r,) = vya; and

? ? .
e E,(r,) =vg, and E,/(r,) = vg,. Here, v, vg, and vg, are values provided by the prover

at the end of the sum-check protocol.

. //During the commit phase, P has committed to three (log m)-variate multilinear polynomials row, col, val. :

1. P — V: four (log m)-variate multilinear polynomials E,y, E\y, read_ts,ow, read_tsco and two (log M)- :

2.

O hides the doubly-logarithmic factors

Spark: Spartan’s sparse PCS

Special case (¢ = 2): Reduce evaluation to proof of multi-set equality

variate multilinear polynomials final_cts,qn, final_ctsco.

Recall that Claim [1 (see Equation (8)) shows that D(rg,7y) = Dy g 1y10em Val(k) - Ex(k) - Ery (k)

assuming that

o Vk € {0,1}°¢™ E, (k) = éq(to-bits(row(k)), rs); and
o Vk € {0,1}°¢™ FE, (k) = éq(to-bits(col(k)),,).
Hence, V and P apply the sum-check protocol to the polynomial val(k) - Eix(k) - Ery(k), which

protocol:
?
e val(r,) = wva; and
? ?

e E,(r.) =vg, and E,/(r,) =vg, . Here, v, vg, and vg, are values provided by the prover

at the end of the sum-check protocol.
V: check if the three equalities above hold with one oracle query each to each of val, B, E,y.

// The following checks if E,, is well-formed as per the first bullet in Step 2 above.

S O o

Y —-P: 1,y €erl.

VY < P: run a sum-check-based protocol for “grand products” ([Thal3l Proposition 2] or [SL20)

Section 5 or 6]) to reduce the check that H,,(WS) = H,~(RS) - HTW(S), where RS, WS, S
are as defined in Claim [3] and H is defined in Claim [to checking if the following hold, Where
rm € FlogM 4 € Fl°8™ are chosen at random by the verifier over the course of the sum-check

protocol:
’
® GQ(""Ma 'rx) = Uegq
?
® EVX(m) — vErx
2 ? . ?
® roW(rm) = Urow; read _tsrow(T'm) = Vread ts,,,; a0d final_ctsow (M) = Vfinal _cts,

V: directly check if the first equality holds, which can be done with O(log M) field operations; check

the remaining equations hold with an oracle query to each of E\,, row, read_ts,ow, final_cts,ow.

Completeness: perfect completeness

. Soundness: O(m)/ | F]
reduces the check that v =) ;g 1y10em Val(k) - Ex(k) - Ery(k) to checking that the following :

equations hold, where r, € F'°8™ chosen at random by the verifier over the course of the sum-check

~ introduced by hash in multi-set equality
~ introduced by sum-check protocol

Round and Communication Complexity:
(3 invocations of the sum-check protocol)

- round complexity: O(log m + log N)

- communication cost: O(log m + log N)
- prover commits to an extra O(m/log> m) field elements.

Verifier Time: O(log m) field operations
dominated by the grand product sum-check reductions

Prover Time: O(N) field operations for untrusted tables

. dominated by linear-time sum-checks

:|8. // The following steps check if E,, is well-formed as per the second bullet in Step 2 above :

Question about these complexity ?

. //During the commit phase, P has committed to three (log m)-variate multilinear polynomials row, col, val. :

1. P — V: four (log m)-variate multilinear polynomials E,, E,y, read_ts,ow, read_tsc, and two (log M)-

2.

AN

O hides the doubly-logarithmic factors

Spark: Spartan’s sparse PCS

Special case (¢ = 2): More discussion

variate multilinear polynomials final_cts,qn, final_ctsco.

Recall that Claim [1 (see Equation (8)) shows that D(rg,7y) = Dy g 1y10em Val(k) - Ex(k) - Ery (k)

assuming that
o Vk € {0,1}°¢™ E, (k) = éq(to-bits(row(k)), rs); and
o Vk € {0,1}°¢™ FE, (k) = éq(to-bits(col(k)),,).

Hence, V and P apply the sum-check protocol to the polynomial val(k) - Exx(k) - Er(k), which
reduces the check that v =), 1y10em Val(k) - Ex(k) - Ery(k) to checking that the following

equations hold, where r, € F'°8™ chosen at random by the verifier over the course of the sum-check

protocol:
?
e val(r,) = wva; and
? ?

o E(r,) =vg, and E,(r,) = vg, . Here, vy, vg, and vg, are values provided by the prover :

at the end of the sum-check protocol.
V: check if the three equalities above hold with one oracle query each to each of val, By, E,y.
// The following checks if E,, is well-formed as per the first bullet in Step 2 above.

Y —-P: 1,y €erl.

VY < P: run a sum-check-based protocol for “grand products” ([Thal3l Proposition 2] or [SL20)

Section 5 or 6]) to reduce the check that H,,(WS) = H,~(RS) - HTW(S), where RS, WS, S
are as defined in Claim [3] and H is defined in Claim [to checking if the following hold, Where
rm € FlogM 4 € Fl°8™ are chosen at random by the verifier over the course of the sum-check

protocol:

5

® GQ(""Ma 'rx) — Vegq
2

® EVX(m) — vErx
2 ? . ?

° I’OW(Tm) — Urow read—tsrow(r'am) — Uread_ts,gy 1 and flnaI‘CterW(rM) — Ufinal_cts;q,

the remaining equatlons hold with an oracle query to each of F,y, row, read_ts,ow, flnal_ctsrOW

V:| directly check if the first equality holds, which can be done with O(log M) field operations; |check

Evaluatlon procedure to prove D(r,,r,) = v:

1. (Write) Evaluate ¢ = 2 memory of size M.

- €q(i, r,) as i ranged over {0,1}1°8¥
-éq(J,r) as j ranged over {0,1 }log M

Prover dose not have to commit to the values written
to memory (or lookup tables), albeit dynamically

determined by the evaluation point (r;, ,).

Because these lookup tables are MLE-structured,
meaning that verifier can quickly evaluate the MLE at a
random point on its own.

Intuitively, prover only cryptographically commits to the values
and counters returned by the aforementioned operations.

Dense representation:

Spark: Spartan’s sparse PCS

dim| |dim dim
val

General case

c=72

- D(ra,ry) = Z D(i, §) - €1og) (6 72) - 1oy (s Ty) 1reeesoesoosoess R R T

: (i,7)€{0,1}1o8(M) x {0,1}los(M) 55 eq210g(M) ((2,5), (rasmy)) = eqlog(M)(7’7TfB) ' eChog(M)(Jﬂ“y)-

c=3

D(rg,ry,72)= > D(i, 3, k) - €810g(M) (5 T2) * €10g(M) (1 Ty) = oMy (Bs T2

:Suppose we want to support sparse polynomials over clog(M) variables for constant ¢ > 2, while ensuring :
:that the prover still only commits to 3c + 1 many dense multilinear polynomials over log m many Varlables
‘and ¢ many over log(N'/¢) many variables. We can proceed as follows. '

Commitment phase:

= prover commits to ¢ + 1 multilinear polynomials defined over log m-variables.

At the beginning of evaluation phase: D(r, ..., r,)

- lookup tables: ¢ memories of size M = N/¢

=~ verifier needs to check c different untrusted memories.

- for each memory checked, the prover has to commit to two multilinear polynomials defined over log m-many variables,
and one defined over log M = log N/c variables. (values and counters)

Spark: Spartan’s sparse PCS

Back to our general result

For each memory checked, the prover has to commit to three multilinear polynomials defined over log(m)-many
. variables, and one defined over log(M) = log(/N)/c variables. We obtain the following theorem.

Theorem 2. Given a polynomial commitment scheme for (log M)-variate multilinear polynomials with the
. following parameters (where M is a positive integer and WLOG a power of 2):

the size of the commitment is c(M);

the running time of the commit algorithm is tc(M);

the running time of the prover to prove a polynomial evaluation is tp(M);
the running time of the verifier to verify a polynomial evaluation is tv(M);

the proof size is p(M),

there exists a polynomial commitment scheme for (clog M)-variate multilinear polynomials that evaluate to a

. non-zero value at at most m locations over the Boolean hypercube {0,1}¢1°8M “ayith the following parameters: E

. Many polynomial commitment schemes have|efficient batching properties for evaluation proofs.

the size of the commitment is|(3c + 1)c(m) + ¢ - c(M);

the running time of the commit algorithm is O (c - (tc(m) + tc(M)));
the running time of the prover to prove a polynomial evaluation is O (c (tp(m) + tc(M)));
the running time of the verifier to verify a polynomial evaluation is O (c (tv(m) + tv(M)));

the proof size is O (c (p(m) + p(M))).

For such

. schemes, the factor ¢ can be omitted in the final three bullet points of Theorem [2| (i.e., prover and verifier
. costs for verifying polynomial evaluation do not grow with c).

... 28

PCS for a log N-variate polynomial of sparsity m,
using ¢ memories of size M = N
(decompose log N variables to ¢ blocks)

Dominate costs for prover:

committing to
= 3¢ + ldense multilinear polys over log m-vars

¢ dense multilinear polys over log(N¢)-vars

Spark: Spartan’s sparse PCS

Specializing the Spark to Lasso

Reduce lookup to a matrix-vector multiplication with a sparse matrix.

. Suppose that the verifier has a commitment to a table ¢ € " as well as a commitment to another vector : N
. a € [F™. Suppose that a prover wishes to prove that all entries in a are in the table ¢. A simple observation :

in prior works [ZBKT22| [ZGK*22| is that the prover can prove that it knows a sparse matrix M € F™x"
. |such that for each row of M, only one cell has a value of 1 and the rest are zeros and that M -t = a,|where 4 " I,
. - is the matrix-vector multiplication. This turns out to be equivalent, up to negligible soundness error, to : ¢

confirming that 5
S M(ry)-ily) = alr), (5) |
ye{o’l}logN

. for an r € F'°8™ chosen at random by the verifier. Here, M @ and t are the so-called multilinear extension

. polynomials (MLEs) of M, ¢, and a (see Section 2.1] for details). 1. Commit to the sparse matrix M
ettt 2+ Reduced to 2 sum-check protocol
: In Lasso, if the prover is honest then the sparse polynomial commitment scheme is applied to the multilinear: 3. Evaluation on a random point

. extension of a matrix M with m rows and N columns, where m is the number of lookups and N is the 51ze (r, ') where r’ € [FlogN

: of the table. If the prover is honest then each row of M is a unit vector.

- In fact, we require the commitment scheme to enforce these properties |even when the prover is potentially: Instead of committing to a logm + log N

malicious. Achieving this simplifies the commitment scheme and provides concrete efficiency benefits. It also: |_y;riate polynomial with sparsity m,
: keeps Lasso’s polynomial IOP simple as it does not need additional invocations of the sum-check protocol to:

Eprove that M satisfies these properties.

we can commit to a log N-variate

polynomial M(r, -) with sparsity m.

D(rg,ry) = Y val(k) - ég(to-bits(row(k)),) - €g(to-bits(col (k)), 7). D(re,my) = D keqo.1y0em Val(k) - En(k) - Ery(k)

kE{O,l}lOg m

Spark: Spartan’s sparse PCS

Specializing the Spark to Lasso N

1. val(k)=1is a constant polynomial —» no need to commit to val(k)

First, the multilinear polynomial val(k) is fixed to 1, and it is not committed by the prover. Recall from Claim a m M
[1] that val(k) extends the function that maps a bit-vector k € {0,1}!°8™ to the value of the k’th non-zero : t

evaluation of the sparse function. Since M is a {0, 1}-valued matrix, val(k) is just the constant polynomial :
: that evaluates to 1 at all inputs.

.. _ 1. Commit to the sparse matrix M

SSecond, for any k = (ki1,...,kiogm) € {0,1}°¢™ the k’th non-zero entry of M is in row to-field(k) : 2. Reduced to a sum-check protocol
522"5{"’ 27~1 . k;. Hence, in Equation (8) of Claim |1} to-bits(row(k)) is simply k{'®| This means that E,,(k) = : 3. Evaluation on a random point
- eq(k, 7z), which |the verifier can evaluate on its own in logarithmic time. |With this fact in hand, the prover (r, ') where ' € Flog N

: does not commit to E, nor prove that it is well-formed.

It indeed effectively removes the contribution of the first log m-variables of M to the costs.

: : . S : Here is my understanding. 7 € F°¢", r, € Foe¥
As a result, the prover simply commits to a log N-variate polynomial with sparsity m.

Then we can use the aforementioned PCS for sparse polynomials: (Decompose log N variables to ¢ blocks.) M(ry, 1y) = Z éq(k, r,) -|éq(to-bits(col(k)), r,)

e B LLLRREELLEITES RLLERITPTIIIIPPOPPPOUPPPPPIIPPPPPPe itrrrriesieeseee i rriiiiiiiesseriiiiiiiiiieeeeseens eiriiiiieeceeen : ke{0,1}logm
: This means that, setting|c = 2 for illustration, |the prover|commits to 6 multilinear polynomials with log(m) :

variables each and to| two multilinear polynomials with (1/2)log N variables each.| . The log N-variate polynomial with sparsity .

: Figure EI describes Spark specialized for Lasso to commit to M. The prover commits to[3c dense (log(m))-: -
: variate multilinear polynomials, called dimy,...,dim. (the analogs of the row and col polynomials of Section :

4.1), Eq,...,E,, and read_tsy, . .., read_ts,, as well as|c dense multilinear polynomials in log(N'/¢) = log(N)/c M(ry, 1y) = - 00..0
: variables, called final_ctsy, . .., final_cts.. Each dim; is purported to be the memory cell from the ¢’th memory : N
: that the sparse polynomial evaluation algorithm (@) reads at each of its m timesteps, E, ..., E. the :

: values returned by those reads, and read_ts;, ..., read_ts. the associated counts. final_ctsy, ..., final_cts,. are : for each ry, € {0,1}logN
: purported to be to counts returned by the memory checking procedure’s final pass over each of the ¢ memories. :

Spark: Spartan’s sparse PCS

Specializing the Spark to Lasso: full evaluation procedure

//During the commit phase applied to the multilinear extension M of m x N matrix M with each row

: Here is my understanding. logm log N
: a unit vector,| P has committed to c different /-variate multilinear polynomials dim;,...,dim.,|where : Y 8 e el

: £ = log(N 1/¢). These are analogs of the polynomials row and col from Figure |§l dim; is purported to : ~ - - - .

. provide the indices of the cells of the ¢’th memory that are read by the sparse polynomial evaluation : M(r,, ry) _ 2 eqk, 1) - eq(tO—bltS(COl(k)),)
. algorithm of Section [3.1}] Note that these indices depend only on the the locations of the non-zero entries : ke{0,1}'oe™

: of M.

//If P is honest, then each dim; maps {0,1}°8™ to {0,...,N'/¢ — 1}. For each j € {0,1}°s™, The log N-variate polynomial with sparsity .

: (dimy(j),...,dim.(7)) is interpreted as specifying the identity of the unique non-zero entry of row j of : m

:|//V requests to evaluate M at input (r,r’) where v’ = (r{,...,7.) € (F*)".
1. P — V: 2c different (log m)-variate multilinear polynomials Fi,..., E., read_tsq,...read_ts, and c N
different /-variate multilinear polynomials final_ctsy, ..., final_cts.,. foreachr, € {0,1 ylog N

//If P is honest, then read_tsy, . ..read_ts. and final_cts;, ..., final_cts, map {0,1}°¢™ to0 {0,...,m—] .
1}, as these are “counter polynomials” for each of the ¢ memories. : 1. Commit to the sparse vector M(r, -) of size N

//If P is honest, then E, ..., E, contain the values returned by each read operation that the sparse 2. Reduced to a sum-check protocol
polynomial ev.aluation algorithm of Section [3.1] makfs to each cof the ¢ memorie§. 3. Evaluation on a random point r’ € FlogN
2. Recall (Equation [11) that|M(r,7") = > ycro 1y0em €4(r, k) - [[;=; Ei(k), assuming that :
o Vk € {0,1}°e™ E;(k) = eq(to-bits(dim;(k)),r}). E
Hence, V and P apply the sum-check protocol to the polynomial g(k) := éq(r, k) - [[;—, Ei(k), :
which reduces the check that v =23, (g 1y10em €4(r, k) [I;_; Ei(k) to checking that the following :
equations hold, where r, € F'°8™ chosen at random by the verifier over the course of the sum-check :
protocol: :

o Ei(ry,) < vg, fori =1,...,c. Here, vg,,...,vg, are values provided by the prover at the end

of the sum-check protocol.
3. V: check if the abovel equalities hold with one oracle query to each E;.
// The following checks if E; is well-formed as per the first bullet in Step [2| above.

Spark: Spartan’s sparse PCS

Specializing the Spark to Lasso: full evaluation procedure

same as the aforementioned steps

P BT PP P : Here is my understanding. r. € [I:logm,r e [FlogN
. 3. V: check if the above equalities hold with one oracle query to each E;. : :

// The following checks if E; is well-formed as per the first bullet in Step [2[above. M(rx, ,,y) — Z éqk, r,) - éq(to-bits(col(k)), r,)
. //In practice, one would apply a single sum-check protocol to a random linear combination of the :

ke{0,1}logm

below polynomials. For brevity, we describe the protocol as invoking ¢ independent instances of

<um-check. _ The log N-variate polynomial with sparsity .
2 5. V<« P: Fori=1,...,c, run a sum-check-based protocol for “grand products” ([Thal3] Proposi- : m
. tion2] or [SL20} Section 5 or 6]) to reduce the check that H..,(WS) = H,,(RS) - H,,(S), where : M(r.r) = - 60 .. 0

RS, WS, S are as defined in Claim [3]and # is defined in Claim [4] to checking if the following hold, : XYy

where 7/ € F¢, r!” € F°8™ are chosen at random by the verifier over the course of the sum-check : N

protocol: :

o E(r}") =g,
? ?

X

. my : my - : - m L
_ o dim;(r;") = v;; read_ts; (7)) = Vread.ts;; and final_cts; (7)) = Vfinal_cts,on
2 6. V: check that the remaining equations
. F,;,dim,;, read_ts,, final_cts;.

| 3. Evaluation on a random point 7’ € [F°¢V

foreach r, € {0,1 ylog N

: 1. Commit to the sparse vector M(r, -) of size N
hold with an oracle query to each of: 2. Reduced to a sum-check protocol

Surge
A generalization of Spark, providing Lasso

Lasso with Spark proving evaluations of the sparse poly M(r, r)

Overview of Lasso. In Lasso, after committing to M , the Lasso verifier picks a random r € F°8™ and

> M) -t6)]=a). 12)

seeks to confirm that

je{o,l}log N

Indeed, if M -t and a are the same vector, then Equation ({12) holds for every choice of r, while if Mt # a,
then by the Schwartz-Zippel lemma, Equation (12| holds with probability at most l—olgﬁ. So up to soundness

 error 1°8™ checking that Mt = a is equivalent to checking that Equation (T2) holds.

Recall from Section Eand Figure that Spark allows the untrusted Lasso prover to commit to M , purported

;lz\;be the multilinear extension of an m x N matrix M, with each row equal to a unit vector, such that|:

-t = a. The commitment phase of Surge is same as that of Spark. Surge generalizes Spark in that the|:

N

Surge prover proves a larger class of statements about the committed polynomial M (Spark focused only on :

: proving evaluations of the sparse polynomial M).

: Exploiting this perspective, we describe Surge, a generalization of Spark that allows an untrusted prover :

to commit to any sparse vector and establish the sparse vector’s inner product with any dense, structured |

for Spark-only structured(SOS) table

The log N-variate polynomial with sparsity m.
m

M) = [

N
foreachr, € {0,1 }log N

1. Commit to the sparse vector M(r, -)
2. Reduced to a sum-check protocol

3. Spark: Evaluation on a random point ' € [Flog N

1. Commit to the sparse vector M(r, -)

2. Verifier obtain d(r) via the commitment
3. Surge: directly proves the LHS

D M)Tl =v

je{0,1}eY

A roughly O(am)-time algorithm for computing LHS
D Mjy-)=), éqli.r) - Tlnz(i)]

JjE{0,1}'eN

Overview of Lasso. In Lasso, after committing to M . the Lasso verifier picks a random r € F°8™ and
: seeks to confirm that

Indeed, if M -t and a are the same vector, then Equation ({12) holds for every choice of r, while if Mt # a,
then by the Schwartz-Zippel lemma, Equation (12| holds with probability at most lil%ﬁ. So up to soundness

. error 0&8™

: Hence, letting

ie{0,1}1ogm

Yo M(r,§) - t(5)|=a(r).

je{o,l}log N

Surge

nz(i) denote the unique column in row ¢ of M that contains a non-zero value

: value 1), the left hand side of Equation equals

> éqi,r) - Tlnz(i)).

iE{O,l}lOg m

Z M; ;- eq(i,r) - eq(d,y).

(i’j)e{o,l}log m-+log N

M(I’,j) = Mi,’ y é"q(i, I’) fori e {0.1 log N
J J € 10,1}

ie{0,]}1logm

M(rj)-tG) = D, My-éql,n-1(j) forje {0,1)V

ie{0,1}logm

(12)

Z M(r,j) - t(j) = (sum of a matrix as follows)

JjE{0,1}1e"

I € logm

j€logN

M(I",j)) t(])

eachentryis M, ;- éq(i, r) - t(j)

Y éqi.r) - Tlnz(i)

ie{0,1}10gm

(since each row of M is an unit vector)

Surge

A roughly O(am)-time algorithm for computing LHS

Computes Z M(r,y)T[y] = v in roughly O(am)-time
yE{O,l}logN

. Hence, letting [nz(i) denote the unique column in row i of M that contains a non-zero value|(namely, the :

: value 1), the left hand side of Equation (2] equals

Suppose that 7' is a SOS table. This means that there is an integer £ > 1 and a = k - ¢ tables T1,...,T, of :
. size N'/¢, as well as an a-variate multilinear polynomial g such that the following holds. Suppose that for :

every r = (r1,...,7¢) € ({0, 1}108(N)/C)C,

:refer to this property as decomposability. In more detail, an SOS table T is one that can be decomposed into :
‘o = O(c) “sub-tables” {T4,...,T,} of size N/¢ satisfying the following two properties. First, any entry T[;] :
tof T can be expressed as a simple expression of a corresponding entry into each of T4, ..., T,.|Second, the :
:so-called multilinear extension polynomial of|each T; can be evaluated quickly |(for any such table, we call T; :
;MLE-structured, where MLE stands for multilinear extension). For example, as noted above, the table T
‘arising in Spark itself is simply the tensor product of MLE-structured sub-tables {77, ..., T}, where a =c. :

D(ra,ry) = Z D(i,) - €diog(m) (4 Tz) €10g(m) (I 7'y)
; (4,5)€{0,1}1o8(M) x {0,1}los(M) :

555
.

Z M(r,j) - t(j) = (sum of a matrix as follows)
jE{O,l}logN

j€logN

I € logm

M(I",j)) t(])

each entry is M; ;- éq(i, r) - (j)

Y éqi.r) - Tlnz(i)

ie{0,1}10gm

(since each row of M is an unit vector)

Surge

A roughly O(am)-time algorithm for computing LHS

Computes Z M(r,y)T[y] = v in roughly O(am)-time
yE{O,l}logN

. Hence, letting|nz(i) denote the unique column in row i of M that contains a non-zero value|(namely, the :
: value 1), the left hand side of Equation (12 equals :

S éqi,r) - Tlnz(i)) (13)
i€{0,1}ogm :

Suppose that T' is a SOS table. This means that there is an integer £ > 1 and o = k - ¢ tables T7,...,T, of
. size N /¢ as well as an a-variate multilinear polynomial g such that the following holds. Suppose that for
every r = (r1,...,7) € ({0, 1}18MN)/¢) :

Y @G @@, Tl O Tz @), Tz Taokgalnze @ o Talnze(i))
1 1€{0,1}lcem .

Compute Z éq(i, r) - T[nz(i)] in roughly O(am)-time: 1. initialize all tables T}, ..., T,
TR 0 e _ 2. iterates over every i € {0,1}" to compute the i'th term

The algorithm to compute Expression (15| simply initializes all tables T7,...,T,, then iterates over every
: ¢ € {0,1}™ and computes the i’th term of the sum with a single lookup into each table (of course, the : o
: algorithm evaluates g at the results of the lookups into T7,...,T,, and multiplies the result by eq(z,7)). 2. multiplies the result by éq(i, r)

1. evaluates g at a lookupsinto Ty, ..., T,

Surge
Description of Surge

Surge: prove Z M(r,y)T[y] = v in roughly O(am)-time
yE{O,l }logN

1. The Surge prover commit to M, purported to be the MLE of an m X N matrix with each row is an unit vector

. Description of Surge. The commitment to M in Su rge consists of commitments to ¢ multilinear polynomials : (Consider M as a sparse vector M(r, -) of size N
: dimy,...,dim., each over log m variables. dim; is purported to be the multilinear extension of nz;. with sparsity m.)

2. Verifier chooses r € {0,1}°¢” and reduce the proof of 2 M(r,)T[y] = vto 2 eq(i,r) - Tnz(i)] = v
ye{0,1}1eN i€{0,1}lem

--

Epolynomlal M satisfy Equatlon 13)). The prover does so by proving 1t ran the aforementioned algorlthm
:for evaluating Expression (15). Following the memory-checking procedure in Section [4] with each table: (assuming each condition E1(l) = T[nz(@)] ... holds)

S &) g (EG)- Ealf))

. je{0,1}losm : : i€{0,1}losm

('D
al
~

~

<
N—’
Q
~~
3

=

N
—
~

o~
—
3

=

N
—
~

~
—
=
+
—

=

N
[\
~~
—
o3
-

=

N
[\
~~

o~
—
%ﬂ
o
+
—

=

N
9]
~~

o~
—
>3

=

N
9]
~~

~
—
N—

gAt the end of the sum-check protocol, the verifier needs to evaluate|eq(r,r’)-g(E1(r'), ..., Es(r"))|at a randomé
: point 7’ € F'°8™ which it can do with [one evaluation query to each E; |(the verifier can compute éq(r,r’) on:
:its own in O(logm) time). '

Surge

Description of Surge

Surge: prove Z M(r,y)T[y] = v in roughly O(am)-time

ye{o’l}logN
(assuming each condition E,(i) = T,[nz(i)] ... holds)
"""" Z@(rj)g(El(])Ea(J)) — Y @&l a@hn),..., Telnz (), T [nza(), - ., Torlnza @), - ., Tac g [02 ()], - - - Talnze(d)]) -
. je{o,1}losm T 1 ie{o1}lesm '

gThe verifier must still check that each E; is well-formed, in the sense that |F;(j) equals T;[dim;(j)]|for all:
: 7 € {0,1}°8™_ This is done exactly as in Spark to confirm that for each of the @ memories,, WS = RSU S

@ = " EE S EEEEESEEEESEEEEEEEEEEEEESEEEEEEEEENEEEEEEEEEEEE "N N NN S S S s SN EE NN EE AN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE N

|T;: 4 =1,...,a viewed as a memory of size N'/¢),|this entails committing for each ¢ to log(m)-variate :
. multilinear polynomiald E; and read_ts; [(purported to capture the value and count returned by each of the
: m lookups into T;) and a log(N'/¢)-variate multilinear polynomial [final_cts;|(purported to capture the final :
: count for each memory cell of T3.) '

Eevaluate each of |dim;, read_ts;, final_cts; at a random point, which it can do with one query|to each. The:
verifier also needs to evaluate the multilinear extension|t; of each sub-table 7; for each i =1,..., « |at a single:
:point. T" being SOS guarantees that the verifier can compute each of these evaluations in O(log(/N)/c) time. :

T being SOS enables that verifier can evaluate each 7; at a random point in O(log(N)/c) time

Surge

Surge s polynomial IOP for proving ye{OZl}me)T[yl -

. Theorem 3. Figure |§| 1s a complete and knowledge-sound polynomial IOP for establishing that the prover
- knows jan m X N matriz M € {0, 1} XN with exactly one entry equal to 1 in each row,|such that

- |T is an SOS lookup table of size N J meaning there are a = kc tables 717, .. Ta, each of size N/¢, such
. that for any r € {0,118 N T[r] = g(T1[r1], ..., Tk[r1], Tes1[ra], - - Tzk[’rz] To—ks1|rel, ..., Talre]). i |Insummary, it commit to a sparse vector and,
. During the commit phase, P commits to ¢ multilinear polynomlals d1m1, : dlmc, each over logm establish the sparse vector’s inner product
. variables. dim; is purported to provide the indices of T(; _1)gx+1,- .., Tix the natural algorithm computing : with any dense, structured (SOS) vector.

S icq0.ayosm €4(4,7) - T[nz[i]] |(see Equation (15)).

//V requests (u,t), where the ith entry of ¢ is T[] and the yth entry of u is M (r,y).

1. P = V: 2a different (logm)-variate multilinear polynomials Fh, ..., FE,, read_ts1,...read_ts, and
a different (log(IV)/c)-variate multilinear polynomials final ctsy, ..., final_cts,.
//E; is purported to specify the values of each of the m reads into T;.

//read_ts1,...read_ts, and final_ctsy,...,final_cts,, are “counter polynomials” for each of the «
sub-tables T;.

2. V and P apply the sum-check protocol to the polynomial h(k) := eq(r,k) - g(E1(k), ..., Eq(k)),
which|reduces the check that v =), {0,1}log m g(F1(k),...,Ey(k)) fto checking that the following :

equations hold, where r, € F'°8™ chosen at random by the verifier over the course of the sum-check
protocol:

o Fi(r,) = vg, fori =1,...,a. Here, vg,,...,vE. are values provided by the prover at the end

of the sum-check protocol.

Surge

Surge’s polynomial IOP for proving » #@.»riy1=v
ye{o’l}logN

. 3. V: check if the above equalities hold with one oracle query to each Ej;. . memory-checking procedure
4. // The following checks if E; is well-formed,|i.e., that E;(j) equals T;[dim;(j)] for all j € {0,1}!°8™, :
5. V—>P: 1,yerl.
. //In practice, one would apply a single sum-check protocol to a random linear combination of the :
below polynomials. For brevity, we describe the protocol as invoking ¢ independent instances of
. sum-check. :
. 6. V<> P: Fori=1,...,q, run a sum-check-based protocol for “grand products” ([Thal3} Proposi- :
. tion2] or [SL20} Section 5 or 6]) to reduce the check that H, (WS) = H, . (RS) - #,~(S), where
RS, WS, S are as defined in Claim [3|and H is defined in Claim [{4] to checking if the following hold, :
where v/ € F, r"” € F'°8™ are chosen at random by the verifier over the course of the sum-check

-

protocol:
?
"\ __
? ? ?
: my £, my £ : - my *
o dim;(r.") = v;; read_ts;(7") = Vread.ts;; and final_cts; (7)) = Vfinal_cts;

7. V: Check the equations hold with an oracle query to each of F,, dim;, read_ts;, final_cts;.

Question: it omits the evaluation of the MLE of each sub-table ?

gveriﬁer also needs to evaluate the multilinear extension fz of each sub-table T; for each ¢ :—1, g .., o Iat a singleg
‘point. T" being SOS guarantees that the verifier can compute each of these evaluations in O(log(/N)/c) time. :

T being SOS enables that verifier can evaluate each 7, at a random point in O(log(N)/c) time

Surge

Lasso lookup argument: a straightforward use of Surge

Input: A polynomial commitment to the multilinear polynomials @: F'°8™ — F, and a description

of an SOS table T' of size N. .

The prover P sends|a Surge-commitment to the multilinear extension M of a matrix M € {0, 1}™* .|
This consists of ¢ different (log(m))-variate multilinear polynomials dimy,...,dim. (see Figure

for details).

The verifier V picks a random r € F°8™ and sends r to P. The verifier makes one evaluation query
to a, to learn a(r).

P and V apply

Surge (Figure IEI), allowing P to prove that » o 1yi0en M (r,y)T[y] = a(r).

Figure 6: Description of the Lasso lookup argument. Here, a denotes the vector of lookups and ¢ the
vector capturing the lookup table (Definition [1.1)). A polynomial commitments to the multilinear extension
polynomial @: F°8™ — TF is given to the verifier as input. If ¢ is unstructured, then ¢ will be set to 1.

Costs of Surge

gProver time. Besides committing to the polynomials dim;, E;, read_ts;, final _cts; for each of the o memories :
:and producing one evaluation proof for each (in practice, these would be batched), the prover must compute
grand product arguments :

3, [Set20], the prover can °
with O(b- k- - m) field :

:its messages in the sum-check protocol used to compute Expression

(which can be batched). Using the linear-time sum-check protocol [CT YT
:compute its messages in the sum-check protocol used to compute Expression (|16

16

) and the

Tha

-operations, where recall that|a = k - c|and |b is the number of monomials in g.

If k = O(1), then this is :

Prover time:

~ commit to polynomials

- produce evaluation proof

~ compute messages in sum-check protocol
~ memory checking argument

;O(b - ¢+ m) time.| For many tables of practical interest, the factor b can be eliminated (e.g., if the total:

- degree of g is a constant independent of b, such as 1 or 2). The costs for the prover in the memory checking :
- argument is similar to [Spark: O(a - m + o - N1/€) field operations, |plus committing to a low-order number of :

: field elements.

Verification costs. The sum-check protocol used to compute Expression
. which the prover sends a univariate polynomial of degree at most 1 + « in each round. Hence, the prover :

16)) consists of log m rounds in

:Isends O(c - k - logm) field elements, and the verifier performs O(k - logm) field operations. | The costs of the i -

. memory checking argument (which can be batched) for the verifier are identical to Spark.

. Verifier time:
~ sum-check protocol
memory checking argument

. Completeness and knowledge soundness of the polynomial IOP. Completeness holds by design:
. and by the completeness of the sum-check protocol, and of the memory checking argument. '

By the soundness of the sum-check protocol and the memory checking argument, if the prover passes?
. the verifier’s checks in the polynomial IOP with probability more than an appropriately chosen threshold:
. v = O(m + N'¢/|F|), then D yeqoyesny M(r,y)Ty] = v, where M is the multilinear extension of the:

following matrix M. For i € {0,1}!°¢™ row i of M consists of all zeros except for entry M, ; = 1, Whereg
= (j1,...,4.) €{0,1,..., N/} is the unique column index such that j; = dim;(3), ..., j. = dim.(4).

Comparison of Lasso’s costs

Scheme Proof Prover work Verifier
size group, field work
Plookup [GW20b] 5G1, 9F O(N), O(Nlog N) 2P
Halo2 6G1,5F O(N), O(NlogN) 2P
Caulk mm 14G1, 1Go2, 4F 15m, O(m? + mlog(N)) 4P
Caulk+ [PK22] 7G1, 1G4, 2F 8m, O(m?) 3P
Flookup [GK22] 7G1,1Go, 4F O(m), O(mlog®m) 3P
Baloo |[ZGK™22] 12G1,1Go, 4FF 14m, O(mlog® m) 5P
cq [EFG22) 8G1, 3F ™m + o(m), O(mlogm) 5P
Lasso w/ Dory O(log(m)) Gr o(cm + c¢N'¢), O(em) O(log(m)) Gr
(SOS table) O(log(m)) F O(y/m) P O(log(m)) F
Lasso w/ Dory O(logm) Gr min{2m + O(VN),m + o(N)}, O(m + N) O(logm) Gr
(unstructured table) O(log(m)) F O(V/N) P O(log(m)) F
Lasso w/ Sona O(log(m)) F o(cm + c¢N'¢), O(em) O(log(m)) F
(SOS table) 0O1)G O(1) G
Lasso w/ Sona O(log(m)) F min{2m+O(VN), N}, O(m + N) O(log(m)) F
(unstructured table) o) G O(1) G
Lasso w/ KZG+Gemini O(logm) G, (c+ 1)m + cN'¢, O(m) O(log(m)) F
(SOS table) O(log(m)) F O(logm) G1 2P
Lasso w/ KZG+Gemini O(logm) G1 (c+ 1)m+cNY¢, O(m+ N) O(log(m)) F
(unstructured table) O(log(m)) F O(logm) G, 2P

Figure 7: Dominant costs of prior lookup arguments vs. our work. Sona is the polynomial commitment scheme

proposed in this work (Section

1.9)).

Other cost profiles for our schemes are possible by using other polynomial

commitments. Notation: m is the number of lookups, IV is the size of the lookup table. We assume N > m for
simplicity. For verification costs only, we assume that m < poly(N), so that logm = ©(log N). The notation O(logm)

Notation:
= m: number of lookups
= N:size of the lookup table

= Assume N > m for simplicity.
~ For verification costs only

= assume m < poly(N)

= so thatlogm = O(og N)
~ For prover work

= m “group work” for prover refers to a
multiexponentiation of size m

= m “exps” refers to m group
exponentiations

¢ dentoes an arbitrary positive integer
= P refers to pairing operations

Efficient properties in Lasso

Described in Abstract

e For m lookups into a table of size n, Lasso’s prover commits to just m + n field elements. Moreover, :
the committed field elements are small, meaning that, no matter how big the field I is, they are all :

in the set {0,...,m}. When using a multiexponentiation-based commitment scheme, this results in :

the prover’s costs dominated by only O(m + n) group operations (e.g., elliptic curve point additions), :
plus the cost to prove an evaluation of a multilinear polynomial whose evaluations over the Boolean

hypercube are the table entries. This represents a significant improvement in prover costs over prior :
lookup arguments (e.g., plookup, Halo2’s lookups, lookup arguments based on logarithmic derivatives). :

Unlike all prior lookup arguments, if the table ¢ is structured (in a precise sense that we define), |
then no party needs to commit to ¢, enabling the use of much larger tables than prior works (e.g., |

of size 2'%° or larger). Moreover, Lasso’s prover only “pays” in runtime for table entries that are
accessed by the lookup operations. This applies to tables commonly used to implement range checks,
bitwise operations, big-number arithmetic, and even transitions of a full-fledged CPU such as RISC-

V. Specifically, for any integer parameter ¢ > 1, Lasso’s prover’s dominant cost is committing to |:
3.c-m+c-n'/c field elements. Furthermore, all these field elements are “small”, meaning they are in |:
the set {0, ..., max{m,n'/¢ q} — 1}, where ¢ is the maximum value in a. '

