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Relation in Lasso and Sparse-poly-commit 

KZG + Gemini: PCS for dense multilinear poly 

Spark: Spartan’s sparse PCS 

start from a simple case (c=2) to a general result 

main tech: offline memory-checking [BEG+91] 

finally, specialing the Spark to Lasso 

Surge: a generalization of Spark, providing Lasso 

prover commits to an  matrix with each row is an unit vector 
(indeed commits to a sparse vector of size  with sparsity ) 
establish the sparse vector’s inner product with any dense, structured vector

m × N
N m



LASSO-of-Truth
Lookup Arguments via Sparse-poly-commit and the Sum-check protocol, including for Oversized Tables
Reduce lookup to a matrix-vector multiplication with a sparse matrix. 

Sparse multilinear polynomial.

m M

N

t
a

1. Commit to the sparse matrix  
2. Reduced to a sum-check protocol 
3. Evaluation on a random point

M
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PCS for dense multilinear poly
KZG-based PCS for multilinear poly
Costs for committing to a -variate multilinear polynomialℓ

Eval
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PCS for dense multilinear poly
KZG-based PCS for multilinear poly

1. Transparent Setup with secret r

2. Commit to  
- commit size:  
- commit time: 

q
O(1)
O(N )

3. Evaluation on  
1. compute  multilinear polys  
2. commit to  -> proof size  
3. check the relation of exponent using pairing

q(z)
ℓ w1, …, wℓ

w1, …, wℓ O(ℓ)

Zhang et al. [ZGK+] vRAM time(1+2): P O(N )

 time: V O(ℓ)

refer to https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
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PCS for dense multilinear poly
Prover time for computing and committing with O(N)
Warning for notation change !! Now prover is required to computes   when evaluating multilinear poly  !q1, …, qℓ f(t1, …, tℓ)

Proof:  with no monomial with q1(x1, …, xℓ) = h(x2, …, xℓ) x1

Proof: It holds for  for .qi−1(xi, …, xℓ) i − 1 = 1,…, ℓ

1. compute  and  in  —》  in totalqi Ri O(2ℓ−i) O(N )

2. commit to  in  —》  in totalqi O(2ℓ−i) O(N )

q1(x1, …, xℓ) = h(x2, …, xℓ)
2ℓ

∑
i=1

ci χi(x1, …, xℓ) =
2ℓ−1

∑
i=1

2ci χi(0,x2, …, xℓ) =
2ℓ−1

∑
i=1

2ci χi(1,x2, …, xℓ)

gq1(r) =
2ℓ−1

∏
1

(gχi(r))2ci

Solve the following equations to compute multilinear  and : 
(  range over ) 

 
 

…

R1 h
x2, …, xℓ {0,1}ℓ−1

f(0,x2, …, xℓ) = R1(x2, …, xℓ) + (0 − t1)h(x2, …, xℓ)
f(1,x2, …, xℓ) = R1(x2, …, xℓ) + (1 − t1)h(x2, …, xℓ)

refer to https://faculty.cc.gatech.edu/~genkin/papers/vram.pdf
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Spark: Spartan’s sparse PCS
Notations & Overview

Dense representation: specifies all multilinear Lagrange basis polys with non-zero coefficients

Notations: 
 denotes the size of -variate multilinear polynomial . 
 denotes the sparsity, then  

Let  be such that  (or )

N log N g
m g(x) = ∑

i∈{0,1}log N:g(i)≠0

g(i)ẽq(i, x)

c N = mc log N = c log m
 variables is decomposed to  blocks, each of .log N c log m

Commitment: commit to a “dense” representation of the sparse polynomial.

Evaluation  of the committed polynomial :g(r) g

unique MLE for x ∈ 𝔽s

Lagrange basis polynomial

A naive solution: compute term-by-term
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Spark: Spartan’s sparse PCS
Notations & Overview
Evaluation  of the committed polynomial  in .g(r) g O(c ⋅ m)

Main idea: Represent the -variate Lagrange basis polynomial at  as a product of  “smaller” Lagrange basis polynomials, each defined over -variate.  
(Reminiscent of Pippenger’s time-optimal algorithm for multiexponentiation)

log N r c log m

1. Evaluate  write-once memory , each consisting  evaluations of  for .      ——> in  total time. 
2. Given all memory , any -variate Lagrange basis polynomial at  (i.e. ) can be evaluated by performing  lookups into memory,  

one for each , and multiplying together the results. ——> in  total time.

c M m ẽq(x, ri) x ∈ {0,1}log m O(c ⋅ m)
M log N r ẽq(x, r) c

ri O(c ⋅ m)

g(r) = ∑
x∈{0,1}log N:g(x)≠0

g(x)ẽq(x, r) = ∑
(x1,…,xc)∈{0,1}c log m:g(x)≠0

g(x)
c

∏
i=1

ẽq(xi, ri)

General case: decompose  variables to  blocks, each of  variables. 
1. Evaluate  memory of size  in  time. (assuming ) 
2. Given all memory, evaluate  by performing  lookups in  time.

log N c (log N )/c
c M = N1/c c ⋅ N1/c = O(c ⋅ m) m ≥ N1/c

g(r) c ⋅ m O(c ⋅ m)

 variables is decomposed to  blocks, each of .log N c log m
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Spark: Spartan’s sparse PCS

A (slightly) simpler result:  c = 2

PCS for a -variate multilinear polynomial of sparsity . 
(decompose  variables to  blocks)

log N m
log N c = 2

Dominate costs for prover: 
- committing to 7 dense multilinear polys over -vars 
- committing to 2 dense multilinear polys over -vars

log m
log(N1/c)

PCS for dense multilinear polys (KZG extension)

As long as ,  
prover time is linear in the sparsity of the committed poly.

m ≥ N1/c
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Spark: Spartan’s sparse PCS
The full result

PCS for a -variate polynomial of sparsity , 
using  memories of size . 
(decompose  variables to  blocks)

log N m
c M = N1/c

log N c
Dominate costs for prover: 
committing to  
- dense multilinear polys over -vars 
-  dense multilinear polys over -vars

3c + 1 log m
c log(N1/c)
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Spark: Spartan’s sparse PCS
Special case (  ): detailed commit phasec = 2
Recall the notations: 
- A -variate multilinear polynomial of sparsity , sub-linear to . 
- Decompose  variables to  blocks. 
- Evaluate  memories of size . —> relation: 

log N m N
log N c

c M = N1/c log N = c log M

Original representation:

log M

log M

 It represents a -variate Lagrange basis polynomial at  as a product of  “smaller” Lagrange basis polynomials, each defined over -variate.log N r c = 2 log M

m row col val

Dense representation:

Commit phase: commit to 3 -variate polyslog m

Commit costs:  field operationsO(m)



Spark: Spartan’s sparse PCS
Special case (  ): detailed evaluation phasec = 2

m row col val

Dense representation:

Commit phase: commit to 3 -variate polyslog m

Evaluation procedure to prove : 
1. (Write) Evaluate  memory of size . 

-   as  ranged over  
 -  as  ranged over  

2. (Read) Evaluate  at point  term-by-term with  lookups into memories.  
• Prover needs to sends the oracles  and , thought as the purported multilinear extensions of the values returned by each memory. 
• If prover is honest,  and  are defined as follows. 
• But malicious prover may send arbitrary oracles. 
• As a result, verifier is required to additionally check the two conditions hold.

D(rx, ry) = v
c = 2 M

ẽq(i, rx) i {0,1}log M

ẽq( j, ry) j {0,1}log M

D (rx, ry) ∈ 𝔽2 log M c ⋅ m
Erx Ery

Erx Ery



Spark: Spartan’s sparse PCS
Special case (  ): A first attempt at the evaluation phasec = 2

But malicious prover may send arbitrary oracles.

If prover is honest, 
  and  are purported as follows:Erx Ery

As a result, V is required to additionally check 
the two conditions hold.

Spartan [Set20]: check the two conditions using 
memory-checking techniques [BEG+91]

which confirms that every memory read over 
the course of an algorithm’s execution returns 
the value last written to that location.



Spark: Spartan’s sparse PCS
Offline memory-checking techniques [BEG+91]

Two operations for our purpose. 
• initialized to a certain value 
• read operations

+  stores a timestamp with each address 
+  modified read operations 

+ followed by a write operation that 
updates the timestamp associated 
with that address

In Spark and [this work]  
+ each memory cell maintains a counter 
+  modified read operations 

+ followed by a write operation where 
the counter is incremented

enable checking with hash
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Spark: Spartan’s sparse PCS
Offline memory-checking techniques [BEG+91]
Goal:  
A trusted checker issues operations to an untrusted memory (provided by prover). 
- Prover executes an algorithm with purported functions, which are indeed read operations into memory. 
- Verifier is convinced that every memory read over the course of an algorithm’s execution returns the value last written to that location.

• Untrusted -sized memory: each cell stores  a value-count pair  where  is initialized to . 

• Modified read operation: (recorded by the local state of the checker) 
1. checker queries a read operation at address . (RS) 
2. the untrusted memory responds with a value-count pair  

(value is responded via the purported oracle  an ) 
3. the untrusted memory increment the counter at address  (WS)

M (v, t) t 0

a
(v, t)

Erx Ery

a

In Spark and [this work]  
+ each memory cell maintains a counter 
+  modified read operations 

+ followed by a write operation where 
the counter is incremented
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Spark: Spartan’s sparse PCS
Offline memory-checking techniques [BEG+91]
Goal:  
A trusted checker issues operations to an untrusted memory (provided by prover). 
- Prover executes an algorithm with purported functions, which are indeed read operations into memory. 
- Verifier is convinced that every memory read over the course of an algorithm’s execution returns the value last written to that location.

• Untrusted -sized memory: each cell stores  a value-count pair  where  is initialized to . 

• Modified read operation: (recorded by the local state of the checker) 
1. checker queries a read operation at address . (RS) 
2. the untrusted memory responds with a value-count pair  

(value is responded via the purported oracle  an ) 
3. the untrusted memory increment the counter at address  (WS)

M (v, t) t 0

a
(v, t)

Erx Ery

a

Invariant maintained on the sets of the checker.

Initialization: RS={} and WS={ |for all }(i, vi,0) i ∈ [M]

exist a set  with cardinality  
such that 

S M
WS = RS ∪ S

dose not exist any set with cardinality  
such that 

M
WS = RS ∪ S

Prove two directions:



Spark: Spartan’s sparse PCS
Offline memory-checking techniques [BEG+91]
Invariant maintained on the sets of the checker.

exist a set  with cardinality  
such that 

S M
WS = RS ∪ S

dose not exist any set with cardinality  
such that 

M
WS = RS ∪ S

Prove two directions:

Prove the converse direction by contradiction:

By contradiction: 
We have  for all  
and  

(k, v, t) ∈ RSj j ≥ i
(k, v, t) ∈ RS

Notation



Spark: Spartan’s sparse PCS
Offline memory-checking techniques [BEG+91]
Prove the converse direction by contradiction:

By contradiction: 
We have  for all  
and  

(k, v, t) ∈ RSj j ≥ i
(k, v, t) ∈ RS

Notation

To construct a set  such that ,  
we need to ensure .   
——》Then  is the difference set.

S RS ∪ S = WS
RS ⊆ WS

S

Initialization phase for two multisets: RS={ } and WS={  | for all  }(i, vi,0) i ∈ [M]

Assumption :  where  differs from the value initially written to address . 
We want to ensure : 
• But outside of the initialization phase, WS is only updated with  by a read operation to address , which returns . 
• Accordingly, we want to ensure  for .  
• But there are only  many read operations.

(k, v, t) ∈ RS v k
(k, v, t) ∈ WS

(k, v, t) k (v, t − 1)
(k, v, t − i) ∈ WS i = 1,…, char(𝔽 )

m < char(𝔽 )
Contradiction !!!



Spark: Spartan’s sparse PCS
Offline memory-checking techniques [BEG+91]
Invariant maintained on the sets of the checker.

exist a set  with cardinality  
such that 

S M
WS = RS ∪ S

dose not exist any set with cardinality  
such that 

M
WS = RS ∪ S

Prove two directions:

Characteristic: https://en.wikipedia.org/wiki/Characteristic_(algebra)
FACTS about characteristic of fields: 
• The characteristic of any field is either  or a 

prime number. 
• The finite field  has characteristic .

0

GF(pn) p

19



Spark: Spartan’s sparse PCS
Offline memory-checking techniques [BEG+91]
Invariant maintained on the sets of the checker.

exist a set  with cardinality  
such that 

S M
WS = RS ∪ S

dose not exist any set with cardinality  
such that 

M
WS = RS ∪ S

Prove two directions:

FACTS about characteristic of fields: 
• The characteristic of any field is either  or a 

prime number. 
• The finite field  has characteristic .

0

GF(pn) p

Remark: Claim 2 applies as long as  to work over fields of smaller characteristic|𝔽 | > m

Remark: Addition to the value, Claim 2 holds for the indices as well to avoid a read to “invalid” memory.



Spark: Spartan’s sparse PCS
Special case (  ): back to the evaluation phasec = 2
Evaluation procedure to prove : 
1. (Write) Evaluate  memory of size . 

-   as  ranged over  
 -  as  ranged over  

2. (Read) Evaluate  at point  term-by-term with  lookups into memories.  
• Prover needs to sends the oracles  and , thought as the purported multilinear extensions of the values returned by each memory. 
• If prover is honest,  and  are defined as follows. 
• But malicious prover may send arbitrary oracles. 
• As a result, verifier is required to additionally check the two conditions hold.

D(rx, ry) = v
c = 2 M

ẽq(i, rx) i {0,1}log M

ẽq( j, ry) j {0,1}log M

D (rx, ry) ∈ 𝔽2 log M c ⋅ m
Erx Ery

Erx Ery

Reduced to prove the multi-set equality, i.e. , with aid of counter polynomials.RS ∪ S = WS

Given the -sized memory and  read operations, prover computes two vectors  and  in . 
- : the count returned by the untrusted memory during th read operation. 
- : final count stored at memory location  after  read operations.

M m Cr ∈ 𝔽m Cf ∈ 𝔽M O(m)
Cr[k] k
Cf[ j] j m

Computation costs:  

It includes a final “read pass” 
over the memory. 
That’s why we refer to it as 
“offline” memory-checking. 

O(m)



Spark: Spartan’s sparse PCS
Special case (  ): Reduce evaluation to proof of multi-set equalityc = 2
Reduced to prove the multi-set equality, i.e. , with aid of counter polynomials.RS ∪ S = WS

Given the -sized memory and  read operations, prover computes two vectors  and  in . 
- : the count returned by the untrusted memory during th read operation. 
- : final count stored at memory location  after  read operations.

M m Cr ∈ 𝔽m Cf ∈ 𝔽M O(m)
Cr[k] k
Cf[ j] j m

Counter Polynomials

Commit to  counter polynomials

Recall the commitment: 
- c(m) for -variate 

- 1 for val 
- for each memory checked 

(decompose  to  blocks) 
- row 
-  for evaluation 
- read_ts 

- c(M) for -variate 
- for each memory 

- final_cts

log m

log N c

Erx

log M



Spark: Spartan’s sparse PCS

Prove the condition holds. ——> Prove the multi-set equality via these committed polynomials.

Similarly, it holds for another condition. 
And the proof is the application of Claim 2.

Subtlety for Remark 3

Special case (  ): Reduce evaluation to proof of multi-set equalityc = 2

4 sum-check-based protocols for grand products: 
(can be computed in parallel) 
- 2 are over vectors of size  
- 2 are over vectors of size 

M
m



Spark: Spartan’s sparse PCS
Special case (  ): Reduce evaluation to proof of multi-set equalityc = 2
Reduced to grand products with hashing.

sum-check protocol for -variate poly of degree 3 
- round complexity:  
- communication cost:  field elements

log m
O(log m)

O(log m)



Spark: Spartan’s sparse PCS
Special case (  ): Reduce evaluation to proof of multi-set equalityc = 2

Round and Communication Complexity: 
(3 invocations of the sum-check protocol) 
- round complexity:  
- communication cost:  
- prover commits to an extra  field elements.

Õ(log m + log N )
Õ(log m + log N )

O(m /log3 m)

 hides the doubly-logarithmic factorsÕ

Verifier Time:  field operations 
dominated by the grand product sum-check reductions

Õ(log m)

Soundness:  
- introduced by hash in multi-set equality 
- introduced by sum-check protocol

O(m)/ |𝔽 |

Completeness: perfect completeness

Prover Time:  field operations for untrusted tables 
dominated by linear-time sum-checks

O(N )

Question about these complexity ?



Spark: Spartan’s sparse PCS
Special case (  ): More discussionc = 2

 hides the doubly-logarithmic factorsÕ

Prover dose not have to commit to the values written 
to memory (or lookup tables), albeit dynamically 
determined by the evaluation point . 

Because these lookup tables are MLE-structured, 
meaning that verifier can quickly evaluate the MLE at a 
random point on its own.

(rx, ry)

Intuitively, prover only cryptographically commits to the values 
and counters returned by the aforementioned operations.



Spark: Spartan’s sparse PCS
General case

Decompose  variables into  blocks.log N c

c = 2

c = 3

Commitment phase:  
- prover commits to  multilinear polynomials defined over -variables. 
At the beginning of evaluation phase:  
- lookup tables:  memories of size  
- verifier needs to check  different untrusted memories. 
- for each memory checked, the prover has to commit to two multilinear polynomials defined over -many variables, 

and one defined over  variables. (values and counters)

c + 1 log m
D̃(r1, …, rc)

c M = N1/c

c
log m

log M = log N/c

m dim
1

dim
2 val

Dense representation:

dim
c…



Spark: Spartan’s sparse PCS
Back to our general result

PCS for a -variate polynomial of sparsity , 
using  memories of size . 
(decompose  variables to  blocks)

log N m
c M = N1/c

log N c
Dominate costs for prover: 
committing to  
- dense multilinear polys over -vars 
-  dense multilinear polys over -vars

3c + 1 log m
c log(N1/c)
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Spark: Spartan’s sparse PCS
Specializing the Spark to Lasso
Reduce lookup to a matrix-vector multiplication with a sparse matrix. 

Instead of committing to a 
-variate polynomial with sparsity ,  
 
we can commit to a -variate 
polynomial  with sparsity .

log m + log N
m

log N
M(r, ⋅ ) m

1. Commit to the sparse matrix  
2. Reduced to a sum-check protocol 
3. Evaluation on a random point 

 where 

M

(r, r′ ) r′ ∈ 𝔽 log N

m M

N

t
a



Spark: Spartan’s sparse PCS
Specializing the Spark to Lasso
1. val(k)=1 is a constant polynomial —》 no need to commit to val(k)

It indeed effectively removes the contribution of the first -variables of  to the costs.log m M̃

2. to-bits(row(k))=k —》no need to commit to row(k), , nor prove  is well-formed.Erx(k) Erx

As a result, the prover simply commits to a -variate polynomial with sparsity .log N m
Then we can use the aforementioned PCS for sparse polynomials: (Decompose  variables to  blocks.)log N c

1. Commit to the sparse matrix  
2. Reduced to a sum-check protocol 
3. Evaluation on a random point 

 where 

M

(r, r′ ) r′ ∈ 𝔽 log N

m M

N

t
a

M̃(rx, ry) = ∑
k∈{0,1}log m

ẽq(k, rx) ⋅ ẽq(to-bits(col(k)), ry)

N

m

Here is my understanding. rx ∈ 𝔽 log m, ry ∈ 𝔽 log N

The -variate polynomial with sparsity .log N m

0 0 … 0M(rx, ry) =

for each ry ∈ {0,1}log N



Spark: Spartan’s sparse PCS
Specializing the Spark to Lasso: full evaluation procedure

M̃(rx, ry) = ∑
k∈{0,1}log m

ẽq(k, rx) ⋅ ẽq(to-bits(col(k)), ry)

N

m

Here is my understanding. rx ∈ 𝔽 log m, ry ∈ 𝔽 log N

The -variate polynomial with sparsity .log N m

0 0 … 0

1. Commit to the sparse vector  of size  
2. Reduced to a sum-check protocol 
3. Evaluation on a random point 

M(r, ⋅ ) N

r′ ∈ 𝔽 log N

M(rx, ry) =

for each ry ∈ {0,1}log N



Spark: Spartan’s sparse PCS
Specializing the Spark to Lasso: full evaluation procedure
same as the aforementioned steps

M̃(rx, ry) = ∑
k∈{0,1}log m

ẽq(k, rx) ⋅ ẽq(to-bits(col(k)), ry)

N

m

Here is my understanding. rx ∈ 𝔽 log m, ry ∈ 𝔽 log N

The -variate polynomial with sparsity .log N m

0 0 … 0M(rx, ry) =

1. Commit to the sparse vector  of size  
2. Reduced to a sum-check protocol 
3. Evaluation on a random point 

M(r, ⋅ ) N

r′ ∈ 𝔽 log N

for each ry ∈ {0,1}log N



Surge
A generalization of Spark, providing Lasso
Lasso with Spark proving evaluations of the sparse poly M̃(r, r′ )

Surge: directly proves the evaluation of a large class of statements about the committed polynomial M̃

1. Commit to the sparse vector   
2. Reduced to a sum-check protocol 
3. Spark: Evaluation on a random point 

M̃(r, ⋅ )

r′ ∈ 𝔽 log N

1. Commit to the sparse vector    
2. Verifier obtain  via the commitment 
3. Surge: directly proves the LHS

M̃(r, ⋅ )
ã(r)

N

m

The -variate polynomial with sparsity .log N m

M(rx, ry) =

for each ry ∈ {0,1}log N

∑
j∈{0,1}log N

M̃(r, j)T[ j] = v
for Spark-only structured(SOS) table



Surge
A roughly -time algorithm for computing LHSO(αm)

∑
j∈{0,1}log N

M̃(r, j) ⋅ t( j) = ∑
i∈{0,1}log m

ẽq(i, r) ⋅ T[nz(i)]

for j ∈ {0,1}log NM̃(r, j) = ∑
i∈{0,1}log m

Mi,j ⋅ ẽq(i, r)

∑
j∈{0,1}log N

M̃(r, j) ⋅ t( j) =

i ∈ log m

j ∈ log N

Mi,j ⋅ ẽq(i, r) ⋅ t( j)each entry is

M̃(r, j) ⋅ t( j)

= ∑
i∈{0,1}log m

ẽq(i, r) ⋅ T[nz(i)]

M̃(r, j) ⋅ t( j) = ∑
i∈{0,1}log m

Mi,j ⋅ ẽq(i, r) ⋅ t( j) for j ∈ {0,1}log N

(sum of a matrix as follows)

(since each row of M is an unit vector)



Surge
Computes  in roughly -time ∑

y∈{0,1}log N

M̃(r, y)T[y] = v O(αm)

SOS table with decomposability

 in Spark: T α = c

g(T1[r1], T2[r2], …, Tc[rc]) =
c

∏
i=1

Ti[ri]

∑
j∈{0,1}log N

M̃(r, j) ⋅ t( j) =

i ∈ log m

j ∈ log N

Mi,j ⋅ ẽq(i, r) ⋅ t( j)each entry is

M̃(r, j) ⋅ t( j)

= ∑
i∈{0,1}log m

ẽq(i, r) ⋅ T[nz(i)]

(sum of a matrix as follows)

(since each row of M is an unit vector)

A roughly -time algorithm for computing LHSO(αm)



Surge
Computes  in roughly -time ∑

y∈{0,1}log N

M̃(r, y)T[y] = v O(αm)

SOS table with decomposability

1. initialize all tables  
2. iterates over every  to compute the ’th term 

1. evaluates  at  lookups into  
2. multiplies the result by 

T1, …, Tα
i ∈ {0,1}m i

g α T1, …, Tα
ẽq(i, r)

Compute  in roughly -time:∑
i∈{0,1}log m

ẽq(i, r) ⋅ T[nz(i)] O(αm)

A roughly -time algorithm for computing LHSO(αm)



Surge
Surge: prove  in roughly -time ∑

y∈{0,1}log N

M̃(r, y)T[y] = v O(αm)

Description of Surge

(Consider  as a sparse vector  of size   
with sparsity .)

M M(r, ⋅ ) N
m

1. The Surge prover commit to , purported to be the MLE of an  matrix with each row is an unit vectorM̃ m × N

2. Verifier chooses , and reduce the proof of  to  r ∈ {0,1}log m ∑
y∈{0,1}log N

M̃(r, y)T[y] = v ∑
i∈{0,1}log m

ẽq(i, r) ⋅ T[nz(i)] = v

3. Prover dose so by proving it ran the -time algorithm correctly with some purported oracles (via the sum-check protocol) O(αm)

(assuming each condition  … holds) E1(i) = T1[nz(i)]

=
4. Reduced to evaluate at a random point r′ ∈ 𝔽 log m



Surge
Surge: prove  in roughly -time ∑

y∈{0,1}log N

M̃(r, y)T[y] = v O(αm)

Description of Surge

(assuming each condition  … holds) E1(i) = T1[nz(i)]

=
5. Prove each  is well-formed by memory-checking procedureEi

6. reduced to evaluate at a random point

 being SOS enables that verifier can evaluate each  at a random point in  timeT t̃i O(log(N )/c)



Surge
Surge’s polynomial IOP for proving ∑

y∈{0,1}log N

M̃(r, y)T[y] = v

In summary, it commit to a sparse vector and, 
establish the sparse vector’s inner product 
with any dense, structured (SOS) vector.



Surge
Surge’s polynomial IOP for proving ∑

y∈{0,1}log N

M̃(r, y)T[y] = v

memory-checking procedure

Question: it omits the evaluation of the MLE of each sub-table ?  



Surge
Lasso lookup argument: a straightforward use of Surge 



Surge
Costs of Surge

Prover time: 
- commit to polynomials 
- produce evaluation proof 
- compute messages in sum-check protocol 
- memory checking argument

(16)

Verifier time: 
- sum-check protocol 
- memory checking argument



Comparison of Lasso’s costs
Costs of Surge

Notation: 
- : number of lookups 
- : size of the lookup table 
- Assume  for simplicity. 
- For verification costs only 

- assume  
- so that  

- For prover work 
-  “group work” for prover refers to a 

multiexponentiation of size  
-  “exps” refers to  group 

exponentiations 
-  dentoes an arbitrary positive integer 

-  refers to pairing operations

m
N

N ≥ m

m ≤ poly(N )
log m = Θ(log N )

m
m

m m

c
P



Efficient properties in Lasso
Described in Abstract


