
Fengrun Liu(刘冯润) 2023.9

Lasso

Outline

Relation in Lasso and Sparse-poly-commit

KZG + Gemini: PCS for dense multilinear poly

Spark: Spartan’s sparse PCS

start from a simple case (c=2) to a general result

main tech: offline memory-checking [BEG+91]

finally, specialing the Spark to Lasso

Surge: a generalization of Spark, providing Lasso

prover commits to an matrix with each row is an unit vector
(indeed commits to a sparse vector of size with sparsity)
establish the sparse vector’s inner product with any dense, structured vector

m × N
N m

LASSO-of-Truth
Lookup Arguments via Sparse-poly-commit and the Sum-check protocol, including for Oversized Tables
Reduce lookup to a matrix-vector multiplication with a sparse matrix.

Sparse multilinear polynomial.

m M

N

t
a

1. Commit to the sparse matrix
2. Reduced to a sum-check protocol
3. Evaluation on a random point

M

3

PCS for dense multilinear poly
KZG-based PCS for multilinear poly
Costs for committing to a -variate multilinear polynomialℓ

Eval

4

PCS for dense multilinear poly
KZG-based PCS for multilinear poly

1. Transparent Setup with secret r

2. Commit to
- commit size:
- commit time:

q
O(1)
O(N)

3. Evaluation on
1. compute multilinear polys
2. commit to -> proof size
3. check the relation of exponent using pairing

q(z)
ℓ w1, …, wℓ

w1, …, wℓ O(ℓ)

Zhang et al. [ZGK+] vRAM time(1+2): P O(N)

 time: V O(ℓ)

refer to https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf

5

PCS for dense multilinear poly
Prover time for computing and committing with O(N)
Warning for notation change !! Now prover is required to computes when evaluating multilinear poly !q1, …, qℓ f(t1, …, tℓ)

Proof: with no monomial with q1(x1, …, xℓ) = h(x2, …, xℓ) x1

Proof: It holds for for .qi−1(xi, …, xℓ) i − 1 = 1,…, ℓ

1. compute and in —》 in totalqi Ri O(2ℓ−i) O(N)

2. commit to in —》 in totalqi O(2ℓ−i) O(N)

q1(x1, …, xℓ) = h(x2, …, xℓ)
2ℓ

∑
i=1

ci χi(x1, …, xℓ) =
2ℓ−1

∑
i=1

2ci χi(0,x2, …, xℓ) =
2ℓ−1

∑
i=1

2ci χi(1,x2, …, xℓ)

gq1(r) =
2ℓ−1

∏
1

(gχi(r))2ci

Solve the following equations to compute multilinear and :
(range over)

…

R1 h
x2, …, xℓ {0,1}ℓ−1

f(0,x2, …, xℓ) = R1(x2, …, xℓ) + (0 − t1)h(x2, …, xℓ)
f(1,x2, …, xℓ) = R1(x2, …, xℓ) + (1 − t1)h(x2, …, xℓ)

refer to https://faculty.cc.gatech.edu/~genkin/papers/vram.pdf

6

Spark: Spartan’s sparse PCS
Notations & Overview

Dense representation: specifies all multilinear Lagrange basis polys with non-zero coefficients

Notations:
 denotes the size of -variate multilinear polynomial .
 denotes the sparsity, then

Let be such that (or)

N log N g
m g(x) = ∑

i∈{0,1}log N:g(i)≠0

g(i)ẽq(i, x)

c N = mc log N = c log m
 variables is decomposed to blocks, each of .log N c log m

Commitment: commit to a “dense” representation of the sparse polynomial.

Evaluation of the committed polynomial :g(r) g

unique MLE for x ∈ 𝔽s

Lagrange basis polynomial

A naive solution: compute term-by-term
7

Spark: Spartan’s sparse PCS
Notations & Overview
Evaluation of the committed polynomial in .g(r) g O(c ⋅ m)

Main idea: Represent the -variate Lagrange basis polynomial at as a product of “smaller” Lagrange basis polynomials, each defined over -variate.
(Reminiscent of Pippenger’s time-optimal algorithm for multiexponentiation)

log N r c log m

1. Evaluate write-once memory , each consisting evaluations of for . ——> in total time.
2. Given all memory , any -variate Lagrange basis polynomial at (i.e.) can be evaluated by performing lookups into memory,

one for each , and multiplying together the results. ——> in total time.

c M m ẽq(x, ri) x ∈ {0,1}log m O(c ⋅ m)
M log N r ẽq(x, r) c

ri O(c ⋅ m)

g(r) = ∑
x∈{0,1}log N:g(x)≠0

g(x)ẽq(x, r) = ∑
(x1,…,xc)∈{0,1}c log m:g(x)≠0

g(x)
c

∏
i=1

ẽq(xi, ri)

General case: decompose variables to blocks, each of variables.
1. Evaluate memory of size in time. (assuming)
2. Given all memory, evaluate by performing lookups in time.

log N c (log N)/c
c M = N1/c c ⋅ N1/c = O(c ⋅ m) m ≥ N1/c

g(r) c ⋅ m O(c ⋅ m)

 variables is decomposed to blocks, each of .log N c log m

8

Spark: Spartan’s sparse PCS

A (slightly) simpler result: c = 2

PCS for a -variate multilinear polynomial of sparsity .
(decompose variables to blocks)

log N m
log N c = 2

Dominate costs for prover:
- committing to 7 dense multilinear polys over -vars
- committing to 2 dense multilinear polys over -vars

log m
log(N1/c)

PCS for dense multilinear polys (KZG extension)

As long as ,
prover time is linear in the sparsity of the committed poly.

m ≥ N1/c
9

Spark: Spartan’s sparse PCS
The full result

PCS for a -variate polynomial of sparsity ,
using memories of size .
(decompose variables to blocks)

log N m
c M = N1/c

log N c
Dominate costs for prover:
committing to
- dense multilinear polys over -vars
- dense multilinear polys over -vars

3c + 1 log m
c log(N1/c)

10

Spark: Spartan’s sparse PCS
Special case (): detailed commit phasec = 2
Recall the notations:
- A -variate multilinear polynomial of sparsity , sub-linear to .
- Decompose variables to blocks.
- Evaluate memories of size . —> relation:

log N m N
log N c

c M = N1/c log N = c log M

Original representation:

log M

log M

 It represents a -variate Lagrange basis polynomial at as a product of “smaller” Lagrange basis polynomials, each defined over -variate.log N r c = 2 log M

m row col val

Dense representation:

Commit phase: commit to 3 -variate polyslog m

Commit costs: field operationsO(m)

Spark: Spartan’s sparse PCS
Special case (): detailed evaluation phasec = 2

m row col val

Dense representation:

Commit phase: commit to 3 -variate polyslog m

Evaluation procedure to prove :
1. (Write) Evaluate memory of size .

- as ranged over
 - as ranged over

2. (Read) Evaluate at point term-by-term with lookups into memories.
• Prover needs to sends the oracles and , thought as the purported multilinear extensions of the values returned by each memory.
• If prover is honest, and are defined as follows.
• But malicious prover may send arbitrary oracles.
• As a result, verifier is required to additionally check the two conditions hold.

D(rx, ry) = v
c = 2 M

ẽq(i, rx) i {0,1}log M

ẽq(j, ry) j {0,1}log M

D (rx, ry) ∈ 𝔽2 log M c ⋅ m
Erx Ery

Erx Ery

Spark: Spartan’s sparse PCS
Special case (): A first attempt at the evaluation phasec = 2

But malicious prover may send arbitrary oracles.

If prover is honest,
 and are purported as follows:Erx Ery

As a result, V is required to additionally check
the two conditions hold.

Spartan [Set20]: check the two conditions using
memory-checking techniques [BEG+91]

which confirms that every memory read over
the course of an algorithm’s execution returns
the value last written to that location.

Spark: Spartan’s sparse PCS
Offline memory-checking techniques [BEG+91]

Two operations for our purpose.
• initialized to a certain value
• read operations

+ stores a timestamp with each address
+ modified read operations

+ followed by a write operation that
updates the timestamp associated
with that address

In Spark and [this work]
+ each memory cell maintains a counter
+ modified read operations

+ followed by a write operation where
the counter is incremented

enable checking with hash

14

Spark: Spartan’s sparse PCS
Offline memory-checking techniques [BEG+91]
Goal:
A trusted checker issues operations to an untrusted memory (provided by prover).
- Prover executes an algorithm with purported functions, which are indeed read operations into memory.
- Verifier is convinced that every memory read over the course of an algorithm’s execution returns the value last written to that location.

• Untrusted -sized memory: each cell stores a value-count pair where is initialized to .

• Modified read operation: (recorded by the local state of the checker)
1. checker queries a read operation at address . (RS)
2. the untrusted memory responds with a value-count pair

(value is responded via the purported oracle an)
3. the untrusted memory increment the counter at address (WS)

M (v, t) t 0

a
(v, t)

Erx Ery

a

In Spark and [this work]
+ each memory cell maintains a counter
+ modified read operations

+ followed by a write operation where
the counter is incremented

15

Spark: Spartan’s sparse PCS
Offline memory-checking techniques [BEG+91]
Goal:
A trusted checker issues operations to an untrusted memory (provided by prover).
- Prover executes an algorithm with purported functions, which are indeed read operations into memory.
- Verifier is convinced that every memory read over the course of an algorithm’s execution returns the value last written to that location.

• Untrusted -sized memory: each cell stores a value-count pair where is initialized to .

• Modified read operation: (recorded by the local state of the checker)
1. checker queries a read operation at address . (RS)
2. the untrusted memory responds with a value-count pair

(value is responded via the purported oracle an)
3. the untrusted memory increment the counter at address (WS)

M (v, t) t 0

a
(v, t)

Erx Ery

a

Invariant maintained on the sets of the checker.

Initialization: RS={} and WS={ |for all }(i, vi,0) i ∈ [M]

exist a set with cardinality
such that

S M
WS = RS ∪ S

dose not exist any set with cardinality
such that

M
WS = RS ∪ S

Prove two directions:

Spark: Spartan’s sparse PCS
Offline memory-checking techniques [BEG+91]
Invariant maintained on the sets of the checker.

exist a set with cardinality
such that

S M
WS = RS ∪ S

dose not exist any set with cardinality
such that

M
WS = RS ∪ S

Prove two directions:

Prove the converse direction by contradiction:

By contradiction:
We have for all
and

(k, v, t) ∈ RSj j ≥ i
(k, v, t) ∈ RS

Notation

Spark: Spartan’s sparse PCS
Offline memory-checking techniques [BEG+91]
Prove the converse direction by contradiction:

By contradiction:
We have for all
and

(k, v, t) ∈ RSj j ≥ i
(k, v, t) ∈ RS

Notation

To construct a set such that ,
we need to ensure .
——》Then is the difference set.

S RS ∪ S = WS
RS ⊆ WS

S

Initialization phase for two multisets: RS={ } and WS={ | for all }(i, vi,0) i ∈ [M]

Assumption : where differs from the value initially written to address .
We want to ensure :
• But outside of the initialization phase, WS is only updated with by a read operation to address , which returns .
• Accordingly, we want to ensure for .
• But there are only many read operations.

(k, v, t) ∈ RS v k
(k, v, t) ∈ WS

(k, v, t) k (v, t − 1)
(k, v, t − i) ∈ WS i = 1,…, char(𝔽)

m < char(𝔽)
Contradiction !!!

Spark: Spartan’s sparse PCS
Offline memory-checking techniques [BEG+91]
Invariant maintained on the sets of the checker.

exist a set with cardinality
such that

S M
WS = RS ∪ S

dose not exist any set with cardinality
such that

M
WS = RS ∪ S

Prove two directions:

Characteristic: https://en.wikipedia.org/wiki/Characteristic_(algebra)
FACTS about characteristic of fields:
• The characteristic of any field is either or a

prime number.
• The finite field has characteristic .

0

GF(pn) p

19

Spark: Spartan’s sparse PCS
Offline memory-checking techniques [BEG+91]
Invariant maintained on the sets of the checker.

exist a set with cardinality
such that

S M
WS = RS ∪ S

dose not exist any set with cardinality
such that

M
WS = RS ∪ S

Prove two directions:

FACTS about characteristic of fields:
• The characteristic of any field is either or a

prime number.
• The finite field has characteristic .

0

GF(pn) p

Remark: Claim 2 applies as long as to work over fields of smaller characteristic|𝔽 | > m

Remark: Addition to the value, Claim 2 holds for the indices as well to avoid a read to “invalid” memory.

Spark: Spartan’s sparse PCS
Special case (): back to the evaluation phasec = 2
Evaluation procedure to prove :
1. (Write) Evaluate memory of size .

- as ranged over
 - as ranged over

2. (Read) Evaluate at point term-by-term with lookups into memories.
• Prover needs to sends the oracles and , thought as the purported multilinear extensions of the values returned by each memory.
• If prover is honest, and are defined as follows.
• But malicious prover may send arbitrary oracles.
• As a result, verifier is required to additionally check the two conditions hold.

D(rx, ry) = v
c = 2 M

ẽq(i, rx) i {0,1}log M

ẽq(j, ry) j {0,1}log M

D (rx, ry) ∈ 𝔽2 log M c ⋅ m
Erx Ery

Erx Ery

Reduced to prove the multi-set equality, i.e. , with aid of counter polynomials.RS ∪ S = WS

Given the -sized memory and read operations, prover computes two vectors and in .
- : the count returned by the untrusted memory during th read operation.
- : final count stored at memory location after read operations.

M m Cr ∈ 𝔽m Cf ∈ 𝔽M O(m)
Cr[k] k
Cf[j] j m

Computation costs:

It includes a final “read pass”
over the memory.
That’s why we refer to it as
“offline” memory-checking.

O(m)

Spark: Spartan’s sparse PCS
Special case (): Reduce evaluation to proof of multi-set equalityc = 2
Reduced to prove the multi-set equality, i.e. , with aid of counter polynomials.RS ∪ S = WS

Given the -sized memory and read operations, prover computes two vectors and in .
- : the count returned by the untrusted memory during th read operation.
- : final count stored at memory location after read operations.

M m Cr ∈ 𝔽m Cf ∈ 𝔽M O(m)
Cr[k] k
Cf[j] j m

Counter Polynomials

Commit to counter polynomials

Recall the commitment:
- c(m) for -variate

- 1 for val
- for each memory checked

(decompose to blocks)
- row
- for evaluation
- read_ts

- c(M) for -variate
- for each memory

- final_cts

log m

log N c

Erx

log M

Spark: Spartan’s sparse PCS

Prove the condition holds. ——> Prove the multi-set equality via these committed polynomials.

Similarly, it holds for another condition.
And the proof is the application of Claim 2.

Subtlety for Remark 3

Special case (): Reduce evaluation to proof of multi-set equalityc = 2

4 sum-check-based protocols for grand products:
(can be computed in parallel)
- 2 are over vectors of size
- 2 are over vectors of size

M
m

Spark: Spartan’s sparse PCS
Special case (): Reduce evaluation to proof of multi-set equalityc = 2
Reduced to grand products with hashing.

sum-check protocol for -variate poly of degree 3
- round complexity:
- communication cost: field elements

log m
O(log m)

O(log m)

Spark: Spartan’s sparse PCS
Special case (): Reduce evaluation to proof of multi-set equalityc = 2

Round and Communication Complexity:
(3 invocations of the sum-check protocol)
- round complexity:
- communication cost:
- prover commits to an extra field elements.

Õ(log m + log N)
Õ(log m + log N)

O(m /log3 m)

 hides the doubly-logarithmic factorsÕ

Verifier Time: field operations
dominated by the grand product sum-check reductions

Õ(log m)

Soundness:
- introduced by hash in multi-set equality
- introduced by sum-check protocol

O(m)/ |𝔽 |

Completeness: perfect completeness

Prover Time: field operations for untrusted tables
dominated by linear-time sum-checks

O(N)

Question about these complexity ?

Spark: Spartan’s sparse PCS
Special case (): More discussionc = 2

 hides the doubly-logarithmic factorsÕ

Prover dose not have to commit to the values written
to memory (or lookup tables), albeit dynamically
determined by the evaluation point .

Because these lookup tables are MLE-structured,
meaning that verifier can quickly evaluate the MLE at a
random point on its own.

(rx, ry)

Intuitively, prover only cryptographically commits to the values
and counters returned by the aforementioned operations.

Spark: Spartan’s sparse PCS
General case

Decompose variables into blocks.log N c

c = 2

c = 3

Commitment phase:
- prover commits to multilinear polynomials defined over -variables.
At the beginning of evaluation phase:
- lookup tables: memories of size
- verifier needs to check different untrusted memories.
- for each memory checked, the prover has to commit to two multilinear polynomials defined over -many variables,

and one defined over variables. (values and counters)

c + 1 log m
D̃(r1, …, rc)

c M = N1/c

c
log m

log M = log N/c

m dim
1

dim
2 val

Dense representation:

dim
c…

Spark: Spartan’s sparse PCS
Back to our general result

PCS for a -variate polynomial of sparsity ,
using memories of size .
(decompose variables to blocks)

log N m
c M = N1/c

log N c
Dominate costs for prover:
committing to
- dense multilinear polys over -vars
- dense multilinear polys over -vars

3c + 1 log m
c log(N1/c)

28

Spark: Spartan’s sparse PCS
Specializing the Spark to Lasso
Reduce lookup to a matrix-vector multiplication with a sparse matrix.

Instead of committing to a
-variate polynomial with sparsity ,

we can commit to a -variate
polynomial with sparsity .

log m + log N
m

log N
M(r, ⋅) m

1. Commit to the sparse matrix
2. Reduced to a sum-check protocol
3. Evaluation on a random point

 where

M

(r, r′) r′ ∈ 𝔽 log N

m M

N

t
a

Spark: Spartan’s sparse PCS
Specializing the Spark to Lasso
1. val(k)=1 is a constant polynomial —》 no need to commit to val(k)

It indeed effectively removes the contribution of the first -variables of to the costs.log m M̃

2. to-bits(row(k))=k —》no need to commit to row(k), , nor prove is well-formed.Erx(k) Erx

As a result, the prover simply commits to a -variate polynomial with sparsity .log N m
Then we can use the aforementioned PCS for sparse polynomials: (Decompose variables to blocks.)log N c

1. Commit to the sparse matrix
2. Reduced to a sum-check protocol
3. Evaluation on a random point

 where

M

(r, r′) r′ ∈ 𝔽 log N

m M

N

t
a

M̃(rx, ry) = ∑
k∈{0,1}log m

ẽq(k, rx) ⋅ ẽq(to-bits(col(k)), ry)

N

m

Here is my understanding. rx ∈ 𝔽 log m, ry ∈ 𝔽 log N

The -variate polynomial with sparsity .log N m

0 0 … 0M(rx, ry) =

for each ry ∈ {0,1}log N

Spark: Spartan’s sparse PCS
Specializing the Spark to Lasso: full evaluation procedure

M̃(rx, ry) = ∑
k∈{0,1}log m

ẽq(k, rx) ⋅ ẽq(to-bits(col(k)), ry)

N

m

Here is my understanding. rx ∈ 𝔽 log m, ry ∈ 𝔽 log N

The -variate polynomial with sparsity .log N m

0 0 … 0

1. Commit to the sparse vector of size
2. Reduced to a sum-check protocol
3. Evaluation on a random point

M(r, ⋅) N

r′ ∈ 𝔽 log N

M(rx, ry) =

for each ry ∈ {0,1}log N

Spark: Spartan’s sparse PCS
Specializing the Spark to Lasso: full evaluation procedure
same as the aforementioned steps

M̃(rx, ry) = ∑
k∈{0,1}log m

ẽq(k, rx) ⋅ ẽq(to-bits(col(k)), ry)

N

m

Here is my understanding. rx ∈ 𝔽 log m, ry ∈ 𝔽 log N

The -variate polynomial with sparsity .log N m

0 0 … 0M(rx, ry) =

1. Commit to the sparse vector of size
2. Reduced to a sum-check protocol
3. Evaluation on a random point

M(r, ⋅) N

r′ ∈ 𝔽 log N

for each ry ∈ {0,1}log N

Surge
A generalization of Spark, providing Lasso
Lasso with Spark proving evaluations of the sparse poly M̃(r, r′)

Surge: directly proves the evaluation of a large class of statements about the committed polynomial M̃

1. Commit to the sparse vector
2. Reduced to a sum-check protocol
3. Spark: Evaluation on a random point

M̃(r, ⋅)

r′ ∈ 𝔽 log N

1. Commit to the sparse vector
2. Verifier obtain via the commitment
3. Surge: directly proves the LHS

M̃(r, ⋅)
ã(r)

N

m

The -variate polynomial with sparsity .log N m

M(rx, ry) =

for each ry ∈ {0,1}log N

∑
j∈{0,1}log N

M̃(r, j)T[j] = v
for Spark-only structured(SOS) table

Surge
A roughly -time algorithm for computing LHSO(αm)

∑
j∈{0,1}log N

M̃(r, j) ⋅ t(j) = ∑
i∈{0,1}log m

ẽq(i, r) ⋅ T[nz(i)]

for j ∈ {0,1}log NM̃(r, j) = ∑
i∈{0,1}log m

Mi,j ⋅ ẽq(i, r)

∑
j∈{0,1}log N

M̃(r, j) ⋅ t(j) =

i ∈ log m

j ∈ log N

Mi,j ⋅ ẽq(i, r) ⋅ t(j)each entry is

M̃(r, j) ⋅ t(j)

= ∑
i∈{0,1}log m

ẽq(i, r) ⋅ T[nz(i)]

M̃(r, j) ⋅ t(j) = ∑
i∈{0,1}log m

Mi,j ⋅ ẽq(i, r) ⋅ t(j) for j ∈ {0,1}log N

(sum of a matrix as follows)

(since each row of M is an unit vector)

Surge
Computes in roughly -time ∑

y∈{0,1}log N

M̃(r, y)T[y] = v O(αm)

SOS table with decomposability

 in Spark: T α = c

g(T1[r1], T2[r2], …, Tc[rc]) =
c

∏
i=1

Ti[ri]

∑
j∈{0,1}log N

M̃(r, j) ⋅ t(j) =

i ∈ log m

j ∈ log N

Mi,j ⋅ ẽq(i, r) ⋅ t(j)each entry is

M̃(r, j) ⋅ t(j)

= ∑
i∈{0,1}log m

ẽq(i, r) ⋅ T[nz(i)]

(sum of a matrix as follows)

(since each row of M is an unit vector)

A roughly -time algorithm for computing LHSO(αm)

Surge
Computes in roughly -time ∑

y∈{0,1}log N

M̃(r, y)T[y] = v O(αm)

SOS table with decomposability

1. initialize all tables
2. iterates over every to compute the ’th term

1. evaluates at lookups into
2. multiplies the result by

T1, …, Tα
i ∈ {0,1}m i

g α T1, …, Tα
ẽq(i, r)

Compute in roughly -time:∑
i∈{0,1}log m

ẽq(i, r) ⋅ T[nz(i)] O(αm)

A roughly -time algorithm for computing LHSO(αm)

Surge
Surge: prove in roughly -time ∑

y∈{0,1}log N

M̃(r, y)T[y] = v O(αm)

Description of Surge

(Consider as a sparse vector of size
with sparsity .)

M M(r, ⋅) N
m

1. The Surge prover commit to , purported to be the MLE of an matrix with each row is an unit vectorM̃ m × N

2. Verifier chooses , and reduce the proof of to r ∈ {0,1}log m ∑
y∈{0,1}log N

M̃(r, y)T[y] = v ∑
i∈{0,1}log m

ẽq(i, r) ⋅ T[nz(i)] = v

3. Prover dose so by proving it ran the -time algorithm correctly with some purported oracles (via the sum-check protocol) O(αm)

(assuming each condition … holds) E1(i) = T1[nz(i)]

=
4. Reduced to evaluate at a random point r′ ∈ 𝔽 log m

Surge
Surge: prove in roughly -time ∑

y∈{0,1}log N

M̃(r, y)T[y] = v O(αm)

Description of Surge

(assuming each condition … holds) E1(i) = T1[nz(i)]

=
5. Prove each is well-formed by memory-checking procedureEi

6. reduced to evaluate at a random point

 being SOS enables that verifier can evaluate each at a random point in timeT t̃i O(log(N)/c)

Surge
Surge’s polynomial IOP for proving ∑

y∈{0,1}log N

M̃(r, y)T[y] = v

In summary, it commit to a sparse vector and,
establish the sparse vector’s inner product
with any dense, structured (SOS) vector.

Surge
Surge’s polynomial IOP for proving ∑

y∈{0,1}log N

M̃(r, y)T[y] = v

memory-checking procedure

Question: it omits the evaluation of the MLE of each sub-table ?

Surge
Lasso lookup argument: a straightforward use of Surge

Surge
Costs of Surge

Prover time:
- commit to polynomials
- produce evaluation proof
- compute messages in sum-check protocol
- memory checking argument

(16)

Verifier time:
- sum-check protocol
- memory checking argument

Comparison of Lasso’s costs
Costs of Surge

Notation:
- : number of lookups
- : size of the lookup table
- Assume for simplicity.
- For verification costs only

- assume
- so that

- For prover work
- “group work” for prover refers to a

multiexponentiation of size
- “exps” refers to group

exponentiations
- dentoes an arbitrary positive integer

- refers to pairing operations

m
N

N ≥ m

m ≤ poly(N)
log m = Θ(log N)

m
m

m m

c
P

Efficient properties in Lasso
Described in Abstract

